Beyond Diet – the role of hormones in metabolic health

DISCLAIMER: (August 14, 2022): The information in this post should in no way be taken as a recommendation to self-diagnose, change one’s diet, self-interpret diagnostic tests, or self-treat any suspected disorder. It is essential that people who suspect they may have symptoms of any condition consult with their doctor, as only a medical doctor can diagnose and treat.

The role of diet in metabolic health is well-known, but many people do not realize that hormones, including those from the thyroid impact that.

The Role of Thyroid Hormones

from The Merck Manual of Medical Information (1997)

The thyroid and the hormones it produces play an important role in metabolic health but it is a hormone from the pituitary gland called Thyroid Stimulating Hormone (TSH) that causes the thyroid gland to release the hormone thyroxine, also called free T4. Free T4 is the inactive form of thyroid hormone. Free T4 is activated (reduced) to free T3 (triiodothyronine), the active form of thyroid hormone.

Overt hypothyroidism is where TSH >10 mU/L, with normal or low free T4). 

Subclinical hypothyroidism (SCH), which is where TSH is higher than the normal cutoffs (TSH >4 mU/L) but less than the criteria for overt hypothyroidism (TSH >10 mU/L), but with normal free T4. 

Metabolic Changes due to Hypothyroidism

It has been well established for decades that people with overt (established) hypothyroidism experience several clinical changes that one might assume to be diet-related at first glance. For example, people with hypothyroidism have a decrease in red blood cells and experience different types of anemia, including the anemia of chronic disease. In addition, ten percent of people with hypothyroidism develop pernicious anemia, which is associated with vitamin B12 and folate (folic acid).  

The slowing of metabolism associated with hypothyroidism also results in a decrease in cardiac (heart) output, which results in both slower heart rate and less ability for the heart to pump blood. 

High Blood Pressure

The decreased ability of the heart to pump leads to increased resistance in the blood vessels, which results in increased blood pressure (hypertension).

In those who had normal blood pressure previous to developing hypothyroidism, blood pressure can rise as high as 150/100 mmHg. Hypothyroidism may increase it further for those previously diagnosed with high blood pressure.

It is not only diet that can contribute to high blood pressure but thyroid hormones (as well as other factors).

Weight Gain

Thyroid hormones act on every organ system in the body, but the thyroid is well-known for its role in energy metabolism. When someone has overt hypothyroidism, there is a slowing of metabolic processes, which results in symptoms such as fatigue, cold intolerance, constipation, and weight gain. 

Weight gain is not only about diet or how much someone eats versus how much they burn off. It is also about the person’s metabolic rate, which can be impacted by several things, including decreased thyroid hormones.

High Cholesterol

It has long been known that those with overt hypothyroidism have high total cholesterol, high low-density lipoproteins (LDL) [14], and high triglycerides (TG) [15], which results from a decrease in the rate of cholesterol metabolism. While many assume that “high cholesterol” results from diet, such as the assumption it is related to eating too many eggs, thyroid hormones may also play a role.

Subclinical Hypothyroidism

It has been found that some people with subclinical hypothyroidism have high low-density lipoproteins (LDL) and triglycerides (TG) and low high-density lipoproteins (HDL) [16]. 

But it is not only high cholesterol that is also found in subclinical hypothyroidism. For example, a 2016 paper referred to above reported that previous studies found no significant difference in symptoms between people with subclinical hypothyroidism and those with overt hypothyroidism [9]. That is, all the symptoms associated with overt hypothyroidism are also seen in subclinical hypothyroidism. Therefore, to assume that high blood pressure, serum cholesterol, or blood sugar is solely the result of diet is to possibly overlook the role of the pancreas and/or the thyroid.

As I wrote about in the previous post, all too often common symptoms of hypothyroidism are assumed to be normal signs of aging. Given the potentially serious consequences leaving hypothyroidism undiagnosed and untreated, it is important that people are able to recognize these symptoms in themselves, and loved ones.

Thyroid Hormones Affect Insulin Secretion of the Pancreas

Just as we cannot look at diet without considering the role of hormones such as insulin, we cannot look at pancreas function in isolation from thyroid function. 

As mentioned above, thyroid hormones influence every organ in the body, including the pancreas. It is now known that there are functional thyroid receptors in the pancreas that affect insulin secretion, and it is thought that thyroid hormones may play a role in the development of diabetes. 

Diagnosis and Treatment

The most recent population-based study data from the US with almost 26,000 adults aged 18 – 74 years found 9.5% had TSH levels >5.1 mIU/L, with a higher prevalence in women and older adults. Among the 9.5% with elevated TSH, 74% had subclinical hypothyroidism (TSH 5.1 and 10 mIU/L), and 26% had overt hypothyroidism (TSG >10 mIU/L) [17].

Note (August 14, 2022): From a practical point of view, this study shows that almost 10% of adults have some form of hypothyroidism, with 7/10% being subclinical and 2½ % having clear hypothyroidism. Given its prevalence and significant risk of being undiagnosed, identifying symptoms and lab markers before it progresses is essential. 

In British Columbia, a diagnosis of subclinical hypothyroidism is made at a TSH > 4 mIU/L, but treatment is only recommended when TSH is above 10 mIU/L [18]. This leaves those with a TSH >4 mIU/L but <10 mIU/L in the situation where they need to get much sicker before treatment is recommended.

The goal of treatment with thyroid hormone replacement is to reduce the patient’s serum TSH concentration into the normal reference range. Since the mean serum TSH for the general population is around 1.4 mIU/L, with 90% having serum TSH levels <3.0 mIU/L, many experts recommend a therapeutic TSH target ranging from 0.5 to 2.5 mIU/L in young and middle-aged patients [19] to 7.7 mIU/L in elderly people over the age of 80 years [20].

Studies with 10 to 20-year follow-up have reported that 33 to 55% of people with subclinical hypothyroidism progress to overt hypothyroidism [21,22,23]. This means that 1/3 to >1/2 of people with subclinical hypothyroidism will develop overt hypothyroidism within that period.

Most experts do not recommend treating people with a TSH > 10 mIU/L but with no symptoms (asymptomatic). However, since a meta-analysis of data from 1950-2010 found no increased risk of coronary heart disease in asymptomatic people with a TSH of 4.5 to 6.9 mIU/L, treating them is generally not recommended [24]. 

There is, however, an increased risk of coronary heart disease in those with a TSH of 7.0 to 9.9 mIU/L, so some experts recommend treating those with a TSH > 7.0 mIU/L whether or not they have symptoms [24]. Unfortunately, despite this elevated risk, individuals in British Columbia do not currently have access to treatment with a TSH < 10 mIU/L under the guidelines [18].

Final Thoughts…

Making recommendations on how someone should change their diet can’t be made in a vacuum and it is for this reason, I evaluate a person’s lab test results in light of their medical history and enquire about family history of type 2 diabetes, heart disease, high cholesterol, blood pressure, thyroid disorders and other conditions as part of my assessment. Then I look at how people eat in light of their risk factors for those conditions.

If I feel that it would be beneficial to have additional lab work such as fasting insulin, or thyroid stimulating hormone (TSH), then I will request that their doctor requisition these tests. Often, when I provide the doctor with my clinical reasons for asking for them, they write the requisition; however, sometimes, they decline. If I don’t think it would not be a financial burden and that having the results will provide the client with a much better understanding of how their diet relates to their weight or health, I will discuss the option of obtaining the tests on a patient-pay basis.  If self-paying for the tests is not feasible, and the risk factors are significant, then I will tailor my dietary recommendation to lower the risk.

NOTE (August 15, 2022): It is important to keep in mind that too little, or too much thyroid hormone can have serious consequences.

Untreated or under-treated hypothyroidism can be serious and is when the body gets too little thyroid hormone. This can lead to a myxedema crisis (covered in this article).

Thyrotoxicosis can also be serious and is when the body gets too much thyroid hormone. This can occur in untreated hyperthyroidism, or by self-treating hypothyroidism (covered in this article).

If you suspect you may have hypothyroidism (or any other clinical condition), consult with your doctor, and “don’t try this at home.”

More Info

If you would like more information about how I can support you in your goal of improved health, please send me a note through the Contact Me form above.

To your good health!

Joy

 

You can follow me on:

Twitter: https://twitter.com/JoyKiddie
Facebook: https://www.facebook.com/BetterByDesignNutrition/

 

References

    1. Crofts, C., et al., Identifying hyperinsulinaemia in the absence of impaired glucose tolerance: An examination of the Kraft database. Diabetes Res Clin Pract, 2016. 118: p. 50-7.
    2. Pareek, M., Bhatt, D.L., Nielsen, M.L., et al,  Enhanced Predictive Capability of a 1-Hour Oral Glucose Tolerance Test: A Prospective Population-Based Cohort Study. Diabetes Care 1 January 2018; 41 (1): 171–177. https://doi.org/10.2337/dc17-1351
    3. Sagesaka H, S.Y., Someya Y, et al, Type 2 Diabetes: When Does It Start? Journal of the Endocrine Society, 2018. 2(5): p. 476-484.
    4. Government of British Columbia, Ministry of Health, Schedule of Fees for Laboratory Services – Outpatient, Payment Schedule, revised April 1, 2022, http://www.bccss.org/bcaplm-site/Documents/Programs/laboratory_services_schedule_of_fees.pdf
    5. BC Guidelines, Hormone Testing – indications and appropriate use, Insulin, https://www2.gov.bc.ca/gov/content/health/practitioner-professional-resources/bc-guidelines/special-endocrine-testing#Insulin
    6. BC Guidelines, Hormone Testing – indications and appropriate use, C-peptide, https://www2.gov.bc.ca/gov/content/health/practitioner-professional-resources/bc-guidelines/special-endocrine-testing#C-peptide
    7. Canadian Diabetes Association, The Burden of Out of Pocket Costs for Canadians with Diabetes, 2011,  http://www.diabetes.ca/CDA/media/documents/publications-and-newsletters/advocacy-reports/burden-of-out-of-pocket-costs-for-canadians-with-diabetes.pdf
    8. Statistics Canada. Table 11-10-0239-01 Income of individuals by age group, sex and income source, Canada, provinces and selected census metropolitan areas, DOI: https://doi.org/10.25318/1110023901-eng
    9. Javed Z, Sathyapalan T. Levothyroxine treatment of mild subclinical hypothyroidism: a review of potential risks and benefits. Ther Adv Endocrinol Metab. 2016;7(1):12-23. doi:10.1177/2042018815616543
    10. Danese MD, Ladenson PW, Meinert CL, Powe NR. Clinical review 115: effect of thyroxine therapy on serum lipoproteins in patients with mild thyroid failure: a quantitative review of the literature. J Clin Endocrinol Metab 2000; 85:2993.
    11. Caraccio N, Ferrannini E, Monzani F. Lipoprotein profile in subclinical hypothyroidism: response to levothyroxine replacement, a randomized placebo-controlled study. J Clin Endocrinol Metab 2002; 87:1533.
    12. Nakajima Y, Yamada M, Akuzawa M, et al. Subclinical hypothyroidism and indices for metabolic syndrome in Japanese women: one-year follow-up study. J Clin Endocrinol Metab 2013; 98:3280.
    13. Janovsky CCPS, Bittencourt MS, Goulart AC, et al. Unfavorable Triglyceride-rich Particle Profile in Subclinical Thyroid Disease: A Cross-sectional Analysis of ELSA-Brasil. Endocrinology 2021; 162.
    14. Lithell, H., Boberg, J., Hellsing, K., Ljunghall, S., Lundqvist, G., Vessby, B., & Wide, L. (1981). Serum lipoprotein and apolipoprotein concentrations and tissue lipoprotein-lipase activity in overt and subclinical hypothyroidism: the effect of substitution therapy. European journal of clinical investigation11(1), 3–10. https://doi.org/10.1111/j.1365-2362.1981.tb01758.x
    15. Nikkila E, Kekki M, Plasma triglyceride metabolism in thyroid disease, J Clin Invest. 1973;51:203. 
    16. Kung, A. W., Pang, R. W., & Janus, E. D. (1995). Elevated serum lipoprotein(a) in subclinical hypothyroidism. Clinical endocrinology43(4), 445–449. https://doi.org/10.1111/j.1365-2265.1995.tb02616.x
    17. Canaris, G. J., Manowitz, N. R., Mayor, G., & Ridgway, E. C. (2000). The Colorado thyroid disease prevalence study.  Archives of internal medicine160(4), 526–534. https://doi.org/10.1001/archinte.160.4.526
    18. BC Guidelines & Protocols Advisory Committee, Thyroid Function Testing in the Diagnosis and Monitoring of Thyroid Function Disorder, October 24, 2018, pg. 6
    19. Biondi B., The Normal TSH Reference Range: What Has Changed in the Last Decade?, The Journal of Clinical Endocrinology & Metabolism, Volume 98, Issue 9, 1 September 2013, Pages 3584–3587, https://doi.org/10.1210/jc.2013-2760
    20. Surks MI, Hollowell JG.2007Age-specific distribution of serum thyrotropin and antithyroid antibodies in the US population: implications for the prevalence of subclinical hypothyroidismJ Clin Endocrinol Metab 92:4575–4582
    21. Kabadi U. M. (1993). ‘Subclinical hypothyroidism’. Natural course of the syndrome during a prolonged follow-up study. Archives of internal medicine153(8), 957–961. https://doi.org/10.1001/archinte.153.8.957Huber, G., Staub, J. J., Meier, C.,
    22. Vanderpump, M. P., Tunbridge, W. M., French, J. M., Appleton, D., Bates, D., Clark, F., Grimley Evans, J., Hasan, D. M., Rodgers, H., & Tunbridge, F. (1995). The incidence of thyroid disorders in the community: a twenty-year follow-up of the Whickham Survey. Clinical endocrinology43(1), 55–68. https://doi.org/10.1111/j.1365-2265.1995.tb01894.x
    23. Mitrache, C., Guglielmetti, M., Huber, P., & Braverman, L. E. (2002). Prospective study of the spontaneous course of subclinical hypothyroidism: prognostic value of thyrotropin, thyroid reserve, and thyroid antibodies. The Journal of clinical endocrinology and metabolism87(7), 3221–3226. https://doi.org/10.1210/jcem.87.7.8678
    24. Rodondi, N., den Elzen, W. P., Bauer, D. C., Cappola, A. R., Razvi, S., Walsh, J. P., Asvold, B. O., Iervasi, G., Imaizumi, M., Collet, T. H., Bremner, A., Maisonneuve, P., Sgarbi, J. A., Khaw, K. T., Vanderpump, M. P., Newman, A. B., Cornuz, J., Franklyn, J. A., Westendorp, R. G., Vittinghoff, E., … Thyroid Studies Collaboration (2010). Subclinical hypothyroidism and the risk of coronary heart disease and mortality. JAMA304(12), 1365–1374. https://doi.org/10.1001/jama.2010.1361
  1.  

Copyright ©2022 BetterByDesign Nutrition Ltd.

LEGAL NOTICE: The contents of this blog, including text, images and cited statistics as well as all other material contained here (the ”content”) are for information purposes only.  The content is not intended to be a substitute for professional advice, medical diagnosis and/or treatment and is not suitable for self-administration without the knowledge of your physician and regular monitoring by your physician. Do not disregard medical advice and always consult your physician with any questions you may have regarding a medical condition or before implementing anything  you have read or heard in our content.