The New EAT Lancet Diet – healthy & sustainable for whom?

A new report released on January 16, 2019 by the EAT-Lancet Commission on Food, Planet and Health sets out what it calls a “healthy and sustainable diet” [1] for the whole world.

The EAT-Lancet report proposes what it calls the “Planetary Health Diet“; a largely plant-based diet which aims to address the simultaneous global problems of malnutrition (under-nutrition) and over-nutrition; specifically that “over 820 million people continue to go hungry every day, 150 million children suffer from long-term hunger that impairs their growth and development, and 50 million children are acutely hungry due to insufficient access to food” and that at the same time “over 2 billion adults are overweight and obese”[2].

The “Planetary Health Diet” intends address both under-nutrition and over-nutrition simultaneously by promoting a 2500 kcal per day diet that focuses on high consumption of carbohydrate-based grains, vegetables, fruit, legumes (pulses and lentils) — while significantly limiting meat and dairy. This sounds a lot like the proposed draft of the new Canada Food Guide (which you can read more about here).

The Planetary Health Diet

The Planetary Health Diet – aka the EAT-Lancet Diet [4]
Here is the food per day that can be eaten per adult on the “Planetary Health Diet“;

  1. Nuts: 50 g (1 -3/4 ounces) /day
  2. Legumes (pulses, lentils, beans): 75 g (2-1/2 oz) /day
  3. Fish: 28 g (less than an ounce) / day
  4. Eggs: 13 g / day (~ 1 egg per week)
  5. Meat: 14 g (1/2 an ounce) / day / Chicken: 29 g (1 ounce) / day
  6. Carbohydrate: whole grain bread and rice, 232 g carbohydrate per day and 50 g / day of starchy vegetables like potato and yam
  7. Dairy: 250 g (the equivalent of one 8 oz. glass of milk)
  8. Vegetables: 300 g (10.5 ounces) of non-starchy vegetables and 200 g (almost 1/2 a pound) of fruit per day
  9. Other: 31 g of sugar (1 ounce), ~50 g cooking oil
On this diet, you can have twice the amount of sugar as meat or egg, and the same amount of sugar as poultry and fish.

While is is understandable how the above diet may address the problems of under-nutrition in much of the world’s population, what about the effect of such a diet on the average American or Canadian — when 1 in 3 Americans[5] and 1 in 4 Canadians is overweight or obese[6]?

Vast Majority (88%) of Americans are Metabolically Unhealthy

A study published in November 2018 in Metabolic Syndrome and Related Disorders reported that 88% of Americans are already metabolically unhealthy[3]. That is, only 12% have metabolic health defined as have levels of metabolic markers “consistent with a high level of health and low risk of impending cardiometabolic disease“.

Metabolic Health is defined as [3];

  1. Waist Circumference: < 102 cm (40 inches) for men and 88 cm (34.5 inches) in women
  2. Systolic Blood Pressure: < 120 mmHG
  3. Diastolic Blood Pressure: < 80 mmHG
  4. Glucose: < 5.5 mmol/L (100 mg/dL)
  5. HbA1c: < 5.7%
  6. Triglycerides: < 1.7 mmol/l (< 150 mg/dL)
  7. HDL cholesterol: ≥ 1.00 mmol/L (≥40 mg/dL) in men and ≥ 1.30 mmol/L (50 mg/dl) in women

When looking at only 3 of the above 7 factors (waist circumference, blood glucose levels and blood pressure) more than <50% of Americans were considered metabolically unhealthy [3].

Given the slightly lower rates of obesity in Canada[6] as in the United States[5], presumably there is a slightly lower percentage of Canadians who are metabolically unhealthy, but the similarity of our diets may make that difference insignificant. As well, it was not only those who were overweight or obese who were metabolically unhealthy;

“Even when WC (waist circumference) was excluded from the definition, only one-third of the normal weight adults enjoyed optimal metabolic health.”

For the 12% of people who are metabolically healthy, a plant-based low glycemic index diet is not problematic, but it's a concern to recommend to the other 88% to eat that way — especially if they are insulin resistant or have Type 2 Diabetes.

Is the “Planetary Health Diet” an advisable diet for the average American or Canadian adult who is already metabolically unhealthy? To answer this question, let’s look closer at the macronutrient and micronutrient content of this diet.

Below is the “healthy reference diet” from page 5 of the report [7], which is based on an average intake of 2500 kcal per day;

Table 1 – Healthy reference diet, with possible ranges, for an intake of 2500 kcal/day (from Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems)

Nutritional Deficiency of the Eat-Lancet Diet

Dr. Zoe Harcombe a UK based nutrition with a PhD in public health nutrition analyzed the above “Healthy Reference Diet” from Table 1 of the Eat-Lancet report using the USDA (United States Department of Agriculture) all-food database and found that in terms of macronutrients, it had [8];

Protein: 90 g (14% of daily calories)
Fat: 100 g (35% of daily calories)
Carbohydrate: 329 g (51% of daily calories)

Dr. Harcombe also reported that in terms of micronutrients, the diet was deficient in retinol (providing only 17% of the recommended amount), Vitamin D (providing only 5% of the recommended amount), Sodium (providing only 22% of the recommended amount), Potassium (providing only 67% of the recommended amount), Calcium (providing only 55% of the recommended amount), Iron  (providing only 88% of the recommended amount, but mostly as much lower bio-available non-heme iron, from plant-based sources), as well as inadequate amounts of Vitamin K (as the most bio-available comes from animal-based sources).

High Carbohydrate Content

The “Planetary Health Diet” contains on average approximately 329 g of carbohydrate per day which is of significant concern — especially in light of the extremely high rates of overweight and obesity in both the United States and Canada, as well as the metabolic diseases that go along with those, including Type 2 Diabetes (T2D), cardiovascular disease, hypertension, and abnormal triglycerides.

Since 1977, Canada Food Guide has recommended that Canadians consume 55-60% of daily calories as carbohydrate and the Dietary Goals for the United States recommending that carbohydrates are 55-60% of daily calories and in 2015, Canada Food Guide increased the amount of daily carbohydrate intake to 45-65% of daily calories as carbohydrate.

What has happened to the rates of overweight and obesity, as well as diabetes from 1977 until the present?

In the early 1970s, only ~8% of men and ~12% of women in Canada were obese and now almost 22% of men and 19% of women are obese. As mentioned above, 1 in 4 in Canada is obese and 1 in 3 in the US is and with those, Type 2 Diabetes as well as the metabolic diseases mentioned above.

Final Thoughts…

The Dietary Guidelines of both Canada and the US have spent the last 40 years promoting a high carbohydrate diet that has provided adults with between 300 g and 400 g of carbohydrate per day (based on a 2500 kcal / day diet).

EAT-Lancet’s “Planetary Health Diet” may seem to be good for the planet, and for those facing under-nutrition in many parts of the world, but with 88% of Americans already metabolically unhealthy (and presumably the majority of Canadians as well), this diet which provides 300 g of carbohydrate per day is going to do nothing to address the high rates of overweight and obesity and metabolic disease that is rampant in North America.

If you would like to learn more about eating a lower carbohydrate diet for weight loss or for putting the symptoms of Type 2 Diabetes and associated metabolic diseases into remission, please send me a note using the Contact Me form.

To your good health!

Joy

You can follow me at:

       https://twitter.com/lchfRD

         https://www.facebook.com/BetterByDesignNutrition/

          https://plus.google.com/+JoyYKiddieMScRD

https://www.instagram.com/lchf_rd

 

Copyright ©2019 BetterByDesign Nutrition Ltd.

LEGAL NOTICE: The contents of this blog, including text, images and cited statistics as well as all other material contained here (the “content”) are for information purposes only.  The content is not intended to be a substitute for professional advice, medical diagnosis and/or treatment and is not suitable for self-administration without the knowledge of your physician and regular monitoring by your physician. Do not disregard medical advice and always consult your physician with any questions you may have regarding a medical condition or before implementing anything  you have read or heard in our content.

References

  1. The EAT-Lancet Commission on Food, Planet and Health,  https://eatforum.org/eat-lancet-commission/
  2. The EAT-Lancet Commission on Food, Planet and Health – EAT-Lancet Commission Brief for Healthcare Professionals,  https://eatforum.org/lancet-commission/healthcare-professionals/
  3. Araújo J, Cai J, Stevens J. Prevalence of Optimal Metabolic Health in American Adults: National Health and Nutrition Examination Survey 2009–2016. Metabolic Syndrome and Related Disorders Vol 20, No. 20, pg 1-7, DOI: 10.1089/met.2018.0105
  4. BBC News, A bit of Meat, a lot of veg – the flexitarian diet to feed 10 billion, James Gallagher, 17 January 2019, https://www.bbc.com/news/health-46865204
  5. State of Obesity, Adult Obesity in the United States, https://stateofobesity.org/adult-obesity/
  6. Statistics Canada, Health at a Glance, Adjusting the scales: Obesity in the Canadian population after correcting for respondent bias,  https://www150.statcan.gc.ca/n1/pub/82-624-x/2014001/article/11922-eng.htm
  7. Willet W, Rockstrom J, Loken B, et al, Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems, The Lancet Commissions, http://dx.doi.org/10.1016/ S0140-6736(18)31788-4
  8. Harcombe Z, The EAT Lancet diet is Nutritionally Deficient,  http://www.zoeharcombe.com/2019/01/the-eat-lancet-diet-is-nutritionally-deficient/

Background to the New Canada Food Guide Draft

This article is to provide background information to the article posted yesterday (available here) about the proposed changes to the new Canada's Food Guide.

As I thought yesterday, I can confirm now that the source of the draft version of the new Canada’s Food Guide was from the Earnscliffe Strategy Group’s report titled “Healthy Eating Strategy – Dietary Guidance Transformation – Focus Groups on Healthy Eating Messages, Visuals and Brands Research Report which was released on October 31 2018.

Health Canada has confirmed that the draft of the new food guide is not the final version.

Media stories about the new guide first began last week (January 4, 2019) after a draft of the new food guide was referred to by the French media outlet LaPresse in their article titled “Les produits laitiers largement écartés du nouveau Guide alimentaire” (translation: “Milk products are largely removed from the new Food Guide”).

English language media stories cited in the article I posted yesterday also relied on the Earncliffe report.

According to this report, Health Canada is planning to release a Canada’s Food Guide (CFG) “suite of products” to meet the needs of a variety of audiences.  The “look and feel” of the final concept will be applied across the suite of products (pg. 1 Healthy Eating Strategy – Dietary Guidance Transformation – Focus Groups on Healthy Eating Messages, Visuals and Brands – Final Report).

This past June, Ann Ellis who is Manager of Dietary Guidance Manager at Health Canada spoke at the Dietitians of Canada conference on Vancouver Island and shared the specific “suite of products” that will be rolled out.

For the general public the focus of the new guide will be on “how to eat” (eating with others, taking meals to school or work, food shopping) rather than on “what to eat“. Guidance with regards to the types of foods and number of servings will be provided to healthcare professionals such as Dietitians rather than to the general public.

The first set of resources that were supposed to be released this past fall but will probably be release in early 2019 will be;

  1. Canada’s Dietary Guidelines for Health Professionals and Policy Makers: A report providing Health Canada’s policy on healthy eating. This report will form the foundation for Canada’s Food Guide tools and resources
  2. Canada’s Food Guide Healthy Eating Principles: Communicating Canada’s Dietary Guidelines in plain language
  3. Canada’s Food Guide Graphic: Expressing the Healthy Eating Principles through visuals and words
  4. Canada’s Food Guide Interactive Tool:  An interactive online tool providing custom information for different life stages, in different settings
  5. Canada’s Food Guide Web Resources: Mobile-responsive healthy eating information (fact sheets, videos, recipes) to help Canadians apply Canada’s Dietary Guidelines

The second set of resources that were to be released in the spring of 2019 but will probably be pushed back to the summer are;

  1. Canada’s Healthy Eating Pattern for Health Professionals and Policy Makers:  A report providing guidance on amounts and types of foods as well as life stage guidance
  2. Enhancements to Canada’s Food Guide: Interactive Tool and Canada’s Food Guide (Web Resources): Enhancements and additional content to Canada’s web application on an ongoing basis

As far as “timelines” for release of the new Canada Food Guide, the following was available from the Health Canada website;

Key dates

The revision of Canada’s food guide will be completed in phases.

In early 2019, we will release:

  • Part 1 of the new dietary guidance policy report for health professionals and policy makers, which will consist of general healthy eating recommendations
  • supporting key messages and resources for Canadians

Later in 2019, we will release:

  • Part 2 of the new dietary guidance policy report, which will consist of healthy eating patterns (recommended amounts and types of foods)
  • additional resources for Canadians
It is very good news that healthy eating patterns with recommended amounts and types of foods will be released to health care professionals, but why not to the general public?

Phase 1 of market research was targeted to five different audiences and focused on a variety of healthy eating topics. The five different audiences included;

  1. adults experienced in food preparation
  2. adults with minimal experience in food preparation
  3. seniors responsible for food preparation
  4. parents of children who are responsible for grocery shopping and food preparation
  5. youth aged 16 to 18

Market research included a series of 10 focus groups that were held in English in Ottawa (March 20 and 21) and in French in Quebec City (March 21 and 22).

Phase 2 of market research was to test the visual elements for the new Canada’s Food Guide to assess:

  • effective use of text and graphics/images
  • credibility, relevancy and perceived value to the audience
  • acceptance
  • appeal, usefulness and appropriateness
  • relevance and engagement
  • memorability (eye-catching and general visual appeal)

Audiences for Phase 2 included:

  • those at risk of marginal health literacy
  • those with adequate health literacy
  • primary level teachers
  • community level educators
  • registered dietitians working in public health or community nutrition
  • registered dietitians working in clinical/private practice/media/bloggers
  • registered nurses working in public or community health.

In addition, 10 focus groups were conducted with members of the general public in five Canadian cities:

  • Toronto, ON (June 5, 2018)
  • Quebec City, QC (June 6, 2018, in French)
  • Calgary, AB (June 7, 2018)
  • Whitehorse, YK (June 11, 2018)
  • St. John’s, NL (June 14, 2018).

Fifteen (15) mini-groups were conducted with health professionals and educators in 3 Canadian cities:

  • Toronto, ON (June 4, 2018)
  • Calgary, AB (June 6, 2018)
  • Quebec City, QC (June 18, 2018, in French)

The following note appeared in the introduction to the Earnscliffe report;

“It is important to note that qualitative research is a form of scientific, social, policy and public opinion research. Focus group research is not designed to help a group reach a consensus or to make decisions, but rather to elicit the full range of ideas, attitudes, experiences and opinions of a selected sample of participants on a defined topic. Because of the small numbers involved the participants cannot be expected to be thoroughly representative in a statistical sense of the larger population from which they are drawn and findings cannot reliably be generalized beyond their number.”

The following topics on “how to eat” were explored for each of the following audiences during Phase 1:

Adults experienced in food preparation
 Healthy eating at work
 Grocery shopping
 Eating on the go

Adults with minimal experience in food preparation
 Healthy eating at home
 Beginner cook
 Celebrations

Seniors responsible for food preparation
 Building healthy meals & snacks
 Eating on a budget
 Healthy eating for seniors

Youth
 Eating on the go
 Building healthy meals & snacks
 Eating out

Parents responsible for food preparation
 Planning & preparing healthy food with the family
 Packing healthy lunches
 Eating out

It does not appear that any of the focus groups were consulted about the decision to eliminate the Meat and Alternatives and Milk and Alternatives food groups. The senior’s focus group was consulted about the “justification” for particular messages related to these. “Non-meat protein options” and “healthy fats” were considered “new information for which they would like to understand the justification” therefore “providing a rationale was felt to be useful“.

Regarding these “justifications“;

“the placement of the justification seemed to be pertinent.

For example, participants reacted favourably to the statement, “Eggs are a very convenient and versatile protein food. Prepare them poached, scrambled or made into an omelette with your favourite chopped vegetables.” because the justification (that eggs are convenient and versatile) was provided at the outset.

By way of contrast, reactions to “Eat meatless meals more often! Instead of meat have baked beans, lentil chilli or an egg sandwich. They cost less!” were less favourable because the justification was provided at the end (they cost less).

Some argued that as a result, this statement came across more as a directive to avoid something they enjoy (eating meat).

(pg. 18 Healthy Eating Strategy – Dietary Guidance Transformation – Focus Groups on Healthy Eating Messages, Visuals and Brands – Final Report).


Topics that were explored for each audience (teachers, dietitians, nurses and people with literacy issues) during Phase 2 included:

  • reactions to the draft look-and-feel elements
  • reactions to the draft visual elements

Two drafts of the new Canada’s Food Guide appeared in the report under the section of “visual elements“;

“At-a-glance” Visual Concept A

“At-a-glance” Visual Concept B

Participant’s feedback on these visual elements are worth noting;

When asked, some could delineate that because vegetables/fruits occupied a larger space visually, or in the example of Visual Concept B that vegetables/fruits were displayed at the top, that most of the food they should consume should come from this category. Others (but not many) inferred from the messaging, “plenty of vegetables and fruit”, that much of what they eat in a day should be vegetables/fruit.

However, all of this was not obvious and most indicated that they would have preferred a more direct reference to either specific proportions or, at a minimum, an image of a plate or a pyramid, in which the appropriate proportions of vegetables/fruits, grains, and protein were illustrated.

(pg. 34 Healthy Eating Strategy – Dietary Guidance Transformation – Focus Groups on Healthy Eating Messages, Visuals and Brands – Final Report).

It would seem that the draft guide’s focus on “how to eat” left focus group participants wanting more direction on “what to eat” which is primarily what Canadian’s look to the Canada Food Guide for. They wanted to know specific proportions of vegetables and fruit, grains and protein to eat and as a bare minimum wanted an image of a plate or a pyramid in which the appropriate proportions were illustrated.

Some final (personal) thoughts…

As mentioned yesterday, I believe that the role of a national food guide is to enable a country’s population to eat as optimally as possible and without providing guidance as to how much food and how often it should be eaten, the public will be left wanting.

It is clear from the reaction of the senior’s group that they wanted to know why they should eat less meat and less saturated fat and as I expressed yesterday, I believe that before Canadians are discouraged from eating meat and milk that the government should provide current, scientific evidence that eating saturated fat contributes to cardiovascular disease. The public doesn’t need nicer worded “justifications”, but the evidence related to limit saturated fat and to what degree.

To your good health!

Joy

You can follow me at:

       https://twitter.com/lchfRD

         https://www.facebook.com/BetterByDesignNutrition/

          https://plus.google.com/+JoyYKiddieMScRD

https://www.instagram.com/lchf_rd

 

Copyright ©2019 BetterByDesign Nutrition Ltd.

LEGAL NOTICE: The contents of this blog, including text, images and cited statistics as well as all other material contained here (the “content”) are for information purposes only.  The content is not intended to be a substitute for professional advice, medical diagnosis and/or treatment and is not suitable for self-administration without the knowledge of your physician and regular monitoring by your physician. Do not disregard medical advice and always consult your physician with any questions you may have regarding a medical condition or before implementing anything  you have read or heard in our content.

New Canada Food Guide Drops Meat and Milk Groups

According to an article published in the Globe and Mail yesterday, the new Canada’s Food Guide will have only 3 Food Groups; (1) Vegetables and Fruit (2) Whole Grains and (3) Protein Foods — and will have dropped the Meat and Alternatives and Milk and Alternatives food groups, along with dropping the recommendation for adults and children to consume 2-3 servings of meat and alternatives and milk and alternatives daily[1].

This draft of the new Food Guide does not recommend a specific amount of protein foods be consumed each day.

According to the article;

The proposed changes are consistent with Health Canada’s previous statements on its intentions; “the majority of Canadians don’t eat enough vegetables, fruits and whole grains.”[1]

The draft of the new Canada Food Guide shows the 3 new food groups and under the heading Protein Foods are images of tofu, red beans & chickpeas, peanut butter, milk, fish and a pork chop, under Whole Grains are images of rice, bread, quinoa and pasta and under Vegetables and Fruit which is the largest of the 3 food groups are a variety of fresh, frozen and canned produce.

The articles published in both the Globe and Mail[1] and on the Canadian Broadcasting Corporation (CBC)’s website[2] state the same things, as do other media outlets and may have been based on the Earnscliffe Strategy Groups report titled “Healthy Eating Strategy – Dietary Guidance Transformation – Focus Groups on Healthy Eating Messages, Visuals and Brands Research Report, Prepared for: Health Canada” which contained the following images:

from “Healthy Eating Strategy – Dietary Guidance Transformation – Focus Groups on Healthy Eating Messages, Visuals and Brands Research Report, Earnscliffe Strategy Group
from “Healthy Eating Strategy – Dietary Guidance Transformation – Focus Groups on Healthy Eating Messages, Visuals and Brands Research Report, Earnscliffe Strategy Group

The proposed new Canada Food Guide should come as no surprise given that the Government of Canada has had posted on its website since 2017 Health Canada’s ‘Guiding Principles, Recommendations and Considerations’ which include Guiding Principle 1;

Regular intake of vegetables, fruit, whole grains, and protein-rich foods*especially plant-based sources of protein

Inclusion of foods that contain mostly unsaturated fat, instead of foods that contain mostly of saturated fat

*Protein-rich foods include: legumes (such as beans), nuts and seeds, soy products (including fortified soy beverage), eggs, fish and other seafood, poultry, lean red meats (including game meats such as moose, deer and caribou), lower fat milk and yogurt, cheeses lower in sodium and fat.

Nutritious foods that contain fat such as homogenized (3.25% M.F.) milk should not be restricted for young children.

The CBC article stated that Dr. Jennifer Taylor, Professor of Foods and Nutrition at the University of Prince Edward Island (UPEI) and who is one of the experts that was consulted on the new guide said;

 “The new guidelines are evidence-based and relevant.”

and added that

“Any government in any developed country has a responsibility to have some good advice for their citizens.”

The question is, is the de-emphasis on the consumption of meat and milk in order to limit saturated fat based on current evidence? More on this below.

Meat and dairy products have been a major part of the diet of populations around the world for millennia and these are high quality proteins which have high bioavailability to the human body and are unequaled in plant-based proteins. Of course, individuals who choose to be vegetarian or vegan for religious or ethical reasons should be free to choose non-animal based protein foods consistent with their beliefs, however it is my opinion that the role of a country’s food guide is to encourage optimal dietary intake in all of its population.

"Bioavailability" has to do with how much of the nutrients in a given food are available for usage by the human body.  In the case of protein, bioavailability  has to do with the type and relative amounts of amino acids present in a protein*. Anti-nutrients such as phytates, oxylates and lectins which are present in plant-based protein sources interfere with the availability of nutrients in those foods. *Animal proteins (1) contain all of the essential amino acids in sufficient quantities and (2) do not contain anti-nutrients (as plant-based proteins do).

High bioavailability proteins are optimal for the body’s of growing children and youth and to preserve the lean muscle tissue and function in aging adults and a pork chop and red beans or chickpeas are not biologically equivalent in terms of the essential amino acids they provide. I believe, that as in the past the Canadian population should be encouraged to consume both Meats and Alternatives whenever possible.

Professor Taylor said that “not everyone follows the Food Guide strictly” however hospitals, long term care facilities, daycare centers, some  schools, as well as prisons are required by their provincial licenses to provide food that meets Canada’s Food Guide. Will there be a different food guide for institutions with a requirement to provide a specific amount of high bioavailable protein daily? I certainly hope so as the young, the infirm, the institutionalized and the aged are amongst the most vulnerable in our society.

In light of this draft of the new food guide, here are some questions that I believe we, as a society must address;

Do we really NOT want to encourage parents to provide children and youth to be with a specific amount of high bioavailable protein daily?

Do we NOT want to encourage pre-teens and teenagers to eat the most bioavailable protein available to support optimal growth?

Do we NOT want to encourage seniors to consume a specific amount of high quality, bioavailable protein every day to reduce their risk for sarcopenia (muscle wasting)?


The new Canada Food Guide’s shift away from regular consumption of meat and dairy is based a perceived need to avoid foods that contain saturated fat — seeing it as a negative component of the diet. Yes, saturated fat is known to raise LDL-cholesterol however such a finding is meaningless unless it is specified which type of LDL-cholesterol goes up. There are small, dense LDL cholesterol which easily penetrates the artery wall and which are associated with heart disease [4,5,6,7] and large, fluffy LDL cholesterol which are not [8,9].

Eight recent meta-analysis and systemic reviews which reviewed evidence from randomized control trials (RCT) that had been conducted between 2009-2017 did not find an association between saturated fat intake and the risk of heart disease [10-17] and the results of the largest and most global epidemiological study published in December 2017 in The Lancet [18] found that those who ate the largest amount of saturated fats had significantly reduced rates of mortality and that low consumption (6-7% of calories) of saturated fat was associated with increased risk of stroke.

As Canadians we must ask where is the current evidence that eating foods with saturated fat is dangerous to health?

I believe that Health Canada needs to provide this evidence — evidence which is not based on proxy measurements that saturated fat raises total LDL cholesterol. There needs to be a clear differentiation between small, dense LDL cholesterol (which are associated with cardiovascular risk) and large, fluffy LDL cholesterol (which are not).

I believe that it is inadequate for Canadians to not be encouraged to eat meat and milk without the government providing current, scientific evidence that eating saturated fat raises small, dense LDL and/or leads to cardiovascular disease. Where is this evidence?

Finally, Canada is in the midst of an obesity and diabetes epidemic. According to Statistics Canada, one in four Canadian adults were overweight or obese in 2011-2012 [19]. That’s about 6.3 million people and that number is continuing to increase. In 1980, only 15% of Canadian school-aged children were overweight or obese. This number has more than doubled to 31% in 2011 [20] and 12% met the criteria for obesity [21,22,23].

How will Canada’s overweight and obesity crisis be addressed by a new Canada Food Guide that de-emphasizes regular consumption of milk and animal proteins which increase satiety (feeling of fullness) while encouraging Canadian children, youth and adults to eat more vegetables, fruit and whole grains?

I believe Canadians deserve these answers before Canada’s Food Guide is changed.

The Office of Nutrition Policy and Promotion is the federal department that is responsible for developing and promoting dietary guidance, including Canada's Food Guide. If you have concerns about the proposed changes to Canada Food Guide, they can be reached by email at nutrition@hc-sc.gc.ca.

To your good health!

Joy

UPDATE (January 10, 2019) This new article summarizes the report on which the media stories about the new Canada Food Guide draft are based and includes very interesting focus group reactions.

You can follow me at:

       https://twitter.com/lchfRD

         https://www.facebook.com/BetterByDesignNutrition/

          https://plus.google.com/+JoyYKiddieMScRD

https://www.instagram.com/lchf_rd

 

Copyright ©2019 BetterByDesign Nutrition Ltd.

LEGAL NOTICE: The contents of this blog, including text, images and cited statistics as well as all other material contained here (the “content”) are for information purposes only.  The content is not intended to be a substitute for professional advice, medical diagnosis and/or treatment and is not suitable for self-administration without the knowledge of your physician and regular monitoring by your physician. Do not disregard medical advice and always consult your physician with any questions you may have regarding a medical condition or before implementing anything  you have read or heard in our content.

References

  1. The Globe and Mail, Ann Hui, Canada’s Food Guide poised to shift focus from meat, dairy to vegetables, protein, published January 8, 2019, https://www.theglobeandmail.com/canada/article-new-draft-of-canadian-nutrition-guide-drops-to-three-food-groups/
  2. CBC News,  New food guide will shift recommended diet from meat, dairy to fruits, veggies says expert, published January 8, 2019, https://www.cbc.ca/news/canada/prince-edward-island/pei-canada-food-guide-jennifer-taylor-1.4970072
  3. Government of Canada, Guiding Principles, Recommendations and Considerations, https://www.foodguideconsultation.ca/guiding-principles-detailed
  4. Tribble DL, Holl LG, Wood PD, et al. Variations in oxidative susceptibility among six low density lipoprotein subfractions of differing density and particle size. Atherosclerosis 1992;93:189–99
  5. Gardner CD, Fortmann SP, Krauss RM, Association of Small Low-Density Lipoprotein Particles With the Incidence of Coronary Artery Disease in Men and Women, JAMA. 1996;276(11):875-881
  6. Lamarche B, Tchernof A, Moorjani S, et al, Small, Dense Low-Density Lipoprotein Particles as a Predictor of the Risk of Ischemic Heart Disease in Men, 
  7. Packard C, Caslake M, Shepherd J. The role of small, dense low density lipoprotein (LDL): a new look, Int J of Cardiology,  Volume 74, Supplement 1, 30 June 2000, Pages S17-S22
  8. Genest JJ, Blijlevens E, McNamara JR, Low density lipoprotein particle size and coronary artery disease, Arteriosclerosis, Thrombosis, and Vascular Biology. 1992;12:187-195
  9. Siri-Tarino PW, Sun Q, Hu FB, Meta-analysis of prospective cohort studies evaluating the association of saturated fat with cardiovascular disease, The American Journal of Clinical Nutrition, Volume 91, Issue 3, 1 March 2010, Pages 502–509
  10. Skeaff CM, PhD, Professor, Dept. of Human Nutrition, the University of Otago, Miller J. Dietary Fat and Coronary Heart Disease: Summary of Evidence From Prospective Cohort and Randomised Controlled Trials, Annals of Nutrition and Metabolism, 2009;55(1-3):173-201
  11. Hooper L, Summerbell CD, Thompson R, Reduced or modified dietary fat for preventing cardiovascular disease, 2012 Cochrane Database Syst Rev. 2012 May 16;(5)
  12. Chowdhury R, Warnakula S, Kunutsor S et al, Association of Dietary, Circulating, and Supplement Fatty Acids with Coronary Risk: A Systematic Review and Meta-analysis, Ann Intern Med. 2014 Mar 18;160(6):398-406
  13. Schwingshackl L, Hoffmann G Dietary fatty acids in the secondary prevention of coronary heart disease: a systematic review, meta-analysis and meta-regression BMJ Open 2014;4
  14. Hooper L, Martin N, Abdelhamid A et al, Reduction in saturated fat intake for cardiovascular disease, Cochrane Database Syst Rev. 2015 Jun 10;(6)
  15. Harcombe Z, Baker JS, Davies B, Evidence from prospective cohort studies does not support current dietary fat guidelines: a systematic review and meta-analysis, Br J Sports Med. 2017 Dec;51(24):1743-1749
  16. Ramsden CE, Zamora D, Majchrzak-Hong S, et al, Re-evaluation of the traditional diet-heart hypothesis: analysis of recovered data from Minnesota Coronary Experiment (1968-73), BMJ 2016; 353
  17. Hamley S, The effect of replacing saturated fat with mostly n-6 polyunsaturated fat on coronary heart disease: a meta-analysis of randomised controlled trials, Nutrition Journal 2017 16:30
  18. Dehghan M, Mente A, Zhang X et al, The PURE Study – Associations of fats and carbohydrate intake with cardiovascular disease and mortality in 18 countries from five continents (PURE): a prospective cohort study. Lancet. 2017 Nov 4;390(10107):2050-2062
  19. Statistic Canada, Adjusting the scales: Obesity in the Canadian population after correcting for respondent bias, Statistics Canada Catalogue no. 82-624. https://www150.statcan.gc.ca/n1/pub/82-624-x/2014001/article/11922-eng.htm
  20. Overweight and obesity in children and adolescents: Results from the 2009 to 2011, Canadian Health Measures Survey [homepage on the Internet]. [Cited 2016 Nov 28]. Available from: http://www.statcan.gc.ca/pub/82-003-x/2012003/article/11706-eng.htm
  21. Twells, LK, Midodzi W, et al. Current and predicted prevalence of obesity in Canada: a trend analysis. CMAJ Open. Mar 3, 2014. Vol 2 (1), E18-E26.
  22. Diabetes: Canada at The Tipping Point [homepage on the Internet]. [Cited 2016 Nov 28]. Available from: https://www.diabetes.ca/CDA/media/documents/publications-and-newsletters/advocacy-reports/canada-at-the-tipping-point-english.pdf
  23. Janseen, Ian. The public health burden of obesity in Canada. Canadian Journal of Diabetes. Apr 2013. Vol 37 (2), 90-96.

The Mediterranean Diet

Most people have heard that a “Mediterranean Diet” is healthy, but what is it?

According to the 2018 Clinical Practice Guidelines from Diabetes Canada;

A “Mediterranean diet” primarily refers to a plant-based diet first described in the 1960s. General features include a high consumption of fruits, vegetables, legumes, nuts, seeds, cereals and whole grains; moderate-to-high consumption of olive oil (as the principal source of fat); low to moderate consumption of dairy products, fish and poultry; and low consumption of red meat, as well as low to moderate consumption of wine, mainly during meals”

There are many countries that border on the Mediterranean Sea and the traditional diets of these regions vary considerably! Countries such as Greece and Turkey have a long-standing tradition of a meat-rich diet, and countries such as France and Spain are known for their high saturated fat intake, which begs the question “what is the Mediterranean Diet” and “which country in the Mediterranean is it from” and “what time period is it from“?

Countries of the Mediterranean

Countries of the Mediterranean

Mediterranean countries include Albania, Algeria, Bosnia and Herzegovina, Croatia, Cyprus, Egypt, France, Greece, Italy, Israel, Lebanon, Libya, Malta, Morocco, Monaco, Montenegro, Slovenia, Spain, Syria, Tunisia and Turkey and each country traditionally had it’s own diet. That is, there isn’t a single “Mediterranean Diet” but Mediterranean Diets.

The “Mediterranean Diet” referred to in the literature and in common speech refers to what was eaten in Southern Italy in the 1960s when Ancel Keys conducted his Six Country Study (1953) and later his Seven Countries Study (1970). These studies allegedly demonstrated that there was an association between dietary fat as a percentage of daily calories and death from degenerative heart disease but as will be elaborated on below, this is largely because some of the data available at the time was ignored by Ancel Keys’.

The definition of a “Mediterranean Diet” according to the Clinical Practice Guidelines is tied to Keys’ definition;

“Ecologic evidence suggesting beneficial health effects of the Mediterranean diet has emerged from the classic studies of
Keys.” [2]

The Data Ancel Keys Ignored

In 1953, Ancel Keys published the results of his “Six Countries Study“[3], where he said that he demonstrated that there was a direct association between dietary fat as a percentage of daily calories and death from degenerative heart disease (see figure below).

Looking at the diagram from Keys’ study above, it looks like a clear linear relationship however, four years later in 1957 Yerushalamy et al published a paper with data from 22 countries[4], which showed a much weaker relationship between dietary fat and death by coronary heart disease than Keys’s Six Countries Study data [3].

As can be seen from this diagram from the Yerushalamy et al study, no clear linear relationship exists. Data points are quite a bit more scattered;

In spite of the publication of Yerushalamy et al’s data in 1957,  in 1970 Keys went on to conduct his Seven Countries Study which he concluded showed an associative relationship between increased dietary saturated fat and coronary heart disease but he failed to include data from countries such as France, in which the relationship did not hold. 

In Keys’ paper published in 1989[5] he found that the average consumption of animal foods (with the exception of fish) was positively associated with 25 year coronary heart disease deaths rates and the average intake of saturated fat was supposedly strongly related to 10 and 25 year coronary heart disease (CHD) mortality rates.

The problem is that Keys published his Seven Country Study 32 years after Yerushalamy et al’s 1957 paper which showed a significantly weaker relationship but Key’s (1) failed to mention the Yerushalamy study and  (2) failed to study countries such as France and Spain that had known high intakes of saturated fat, yet low coronary heart disease rates.

The “French Paradox” Ignored

France is known for the “French paradox” (a term which came about in the 1980s) because of the country’s relatively low incidence of coronary heart disease (CHD) while having a diet relatively rich in saturated fat. According to a 2004 paper about the French Paradox [6], there was diet and disease data available from the French population that was carried out in 1986–87 and which demonstrated that the saturated fat intake of the French was 15% of the total energy intake, yet such a high consumption of saturated fatty acids was not associated with high coronary heart disease incidence[6]. According to the same paper about the French Paradox, high saturated fat intake combined with low coronary heart disease rates were also observed in other Mediterranean countries such as Spain [6].  Nevertheless, Keys published his 1989 study[5] ignoring the French dietary and disease data that was available 2-3 years earlier (from 1986-1987) [6], as well as ignoring Yerushalamy et al‘s data from 1957Was this deliberate oversight on Ancel Keys’ part or simply poor research practices?

As a result of Keys omission and the wide publication of his Seven Country Study results, the so-called “Mediterranean Diet” has become synonymous with the diet of Southern Italy in the 1960’s; a diet that is no longer eaten by children and youth there, according to the World Health Organization (WHO):

“In Cyprus, a phenomenal 43% of boys and girls aged nine are either overweight or obese. Greece, Spain and Italy also have rates of over 40%. The Mediterranean countries which gave their name to the famous diet that is supposed to be the healthiest in the world have children with Europe’s biggest weight problem.[7]”

Some Final Thoughts…

There never really was a “Mediterranean Diet” and the diets of Mediterranean countries in the 1960s varied considerably when it came to intake of red meat, cheese and saturated fat. The so-called “Mediterranean diet” is simply what people in Southern Italy ate in the 1960’s.

That said, for those who are metabolically healthy (that is, not having insulin resistance or Type 2 Diabetes, high blood pressure or high cholesterol) eating what has become known as “the Mediterranean Diet” of whole, plant-based foods including vegetables, legumes, nuts, seeds, modest amounts of whole grains and fruit and moderate-to-high consumption of olive oil, as well as the inclusion of full-fat cheese and meat, fish and poultry is certainly a healthy choice and offers lots of variety!

Even for those that are metabolically compromised (already insulin resistance or have Type 2 Diabetes) the same style of eating can be adapted to limit quickly metabolized carbohydrate, while still enjoying all the other foods that comprise a traditional “Mediterranean Diet”.

Would you like to know more?

Please send me a note using the Contact Me form above and I’ll be happy to reply.

To your good health!

Joy

You can follow me at:

       https://twitter.com/lchfRD

         https://www.facebook.com/BetterByDesignNutrition/

          https://plus.google.com/+JoyYKiddieMScRD

https://www.instagram.com/lchf_rd

 

Copyright ©2019 BetterByDesign Nutrition Ltd.

LEGAL NOTICE: The contents of this blog, including text, images and cited statistics as well as all other material contained here (the “content”) are for information purposes only.  The content is not intended to be a substitute for professional advice, medical diagnosis and/or treatment and is not suitable for self-administration without the knowledge of your physician and regular monitoring by your physician. Do not disregard medical advice and always consult your physician with any questions you may have regarding a medical condition or before implementing anything  you have read or heard in our content.

References

  1. Sievenpiper JL, Chan CB, Dwortatzek PD, Freeze C et al, Nutrition Therapy – 2018 Clinical Practice Guidelines, Canadian Journal of Diabetes 42 (2018) S64–S79 http://guidelines.diabetes.ca/docs/CPG-2018-full-EN.pdf
  2. Trichopoulou A, Costacou T, Bamia C et al, Adherence to a Mediterranean Diet and Survival in a Greek Population, N Engl J Med 2003;348:2599-608.
  3. Keys, A. Atherosclerosis: a problem in newer public health. J. Mt. Sinai Hosp. N. Y.20, 118–139 (1953).
  4. Yerushalmy J, Hilleboe HE. Fat in the diet and mortality from heart disease. A methodologic note. NY State J Med 1957;57:2343–54
  5. Kromhout D, Keys A, Aravanis C, Buzina R et al, Food consumption patterns in the 1960s in seven countries. Am J Clin Nutr. 1989 May; 49(5):889-94.
  6. Ferrières J. The French paradox: lessons for other countries. Heart. 2004;90(1):107-111.
  7. Boseley, Sarah, The Guardian, Thur May 24, 2018, ‘The Mediterranean diet is gone’: regions children are fattest in Europe.  https://www.theguardian.com/society/2018/may/24/the-mediterranean-diet-is-gone-regions-children-are-fattest-in-europe

A New Year’s Resolution – a goal without a plan

It is said that the definition of “insanity” is doing the same thing over and over again expecting different results, yet with the best of intentions many of us make a New Year’s Resolution each January 1st saying “this will be the year“!  The problem is, that by the end of the first week in January 50% of us will have already given up on our resolution to lose weight, exercise more or eat healthier[1]. By the end of the month, 83% have given up[1].  In fact, a study on New Year’s Resolutions found that only 8% of those that make these types of health-related commitments will actually achieve them[1], which are  pretty discouraging statistics.

If we want to lose weight, get in shape and start eating healthier the way NOT to do it is by making a New Year’s Resolution.

We need a plan; a plan that is specific, with outcomes that are measurable and achievable and that are relevant to our overall life goals and realistic, and we need them to be accomplished in a timely manner. These are the essence of SMART goals! You can read more about those here.

New Year’s Resolutions; a desire without a commitment

Saying “I’m going to lose weight this year” says nothing about how much weight, in what period of time, by what means, nor what “success looks like”.  It’s not a goal, but a wish. It’s expressing a desire without a commitment. This also applies to exercising more or eating healthier.

How convincing would it be to us if someone said “I want to spend the rest of my life with you” but made no commitment to a relationship, or to live in the same city as us or to spending time with us?  Why should we put confidence in our ourselves when we also express desires without commitment?

We may WANT to lose weight, we may WANT to exercise more and WANT to eat healthier but all the “wanting” in the world won’t move us closer to any of those goals because a goal without a plan is just a wish.

…and a goal without a plan is a New Year’s resolution.

If you want to lose weight, exercise more and eat healthier this year, then what I’d recommend is rather than making a New Year’s resolution this year, make a commitment to yourself to take the month of January to design an implementable plan built on SMART goals.

If you do this, by the end of the month when 83% of people that have made New Year’s Resolutions have already given up, you will be ready to begin implement a well thought out plan!  When most people have forgotten their wish, you will have what you need to be successful.

If you would like help setting SMART health and nutrition goals for yourself, I offer a one-hour session that is especially for this purpose that is available via Skype or telephone. I’ll help you set goals for yourself that are specific, measurable,  achievablerelevant /realistic and timely. These will be your goals and success will look like however you decide to measure it.  I will assist as a coach helping you set goals for yourself that are achievable, relevant and that can be achieved in a realistic amount of time.

If you would like to know more, please click here or if you have questions, please send me a note using the Contact Me form located on the tab above.

Wishing you and yours the very best for a healthy and happy New Year!

Joy

You can follow me at:

       https://twitter.com/lchfRD

         https://www.facebook.com/BetterByDesignNutrition/

          https://plus.google.com/+JoyYKiddieMScRD

https://www.instagram.com/lchf_rd

 

Copyright ©2018 BetterByDesign Nutrition Ltd.

LEGAL NOTICE: The contents of this blog, including text, images and cited statistics as well as all other material contained here (the “content”) are for information purposes only.  The content is not intended to be a substitute for professional advice, medical diagnosis and/or treatment and is not suitable for self-administration without the knowledge of your physician and regular monitoring by your physician. Do not disregard medical advice and always consult your physician with any questions you may have regarding a medical condition or before implementing anything  you have read or heard in our content.

References

  1. Norcross, JC et al, Auld lang syne: success predictors, change processes, and self-reported outcomes of New Year’s resolvers and nonresolvers. J Clin Psychol. 2002 Apr;58(4):397-405

 

Will You Achieve Your New Year’s Resolution?

If you are one of the many people that will be making a health-related New Year’s resolution this year, I’ve got some bad news for you. Half of people that make this type of resolution will have given up after only a week and 83% will have thrown in the towel by the end of January[1].

Why is that?

For one, it takes ~ 66 days (more than 2 months) for a new habit to become ingrained[2] and two, most New Year’s resolutions are wishes, more than a plan. More on that in a bit…

Yesterday I asked a question on Twitter:

 

 

“Are you making a New Year’s resolution this year and if so, is it to:

  • lose weight
  • exercise more
  • eat healthier
  • something else”

Of the 62 people that completed the survey, here are the results:

As you can see, they are pretty close, but of these 62 people, how many will actually meet their New Year’s Resolution? Based on a study on the outcome of New Year’s resolutions[1] referred to above, only 8% of people will meet their New Year’s resolution so at the end of 2019, of the 62 people above;

  • not even one person (0.94%) will have successfully achieved the weight loss they set out to
  • a little more than one person (1.44%) will have been successful at consistently exercising more
  • a little more than one person (1.54%) will have been successful at consistently eating healthier
  • one person (1.04%) will have met their other health-related goal

This is not very encouraging, is it?

As I said above, most New Year’s resolutions are wishes, more than a plan. A wish is along the lines of “I’d like to” but without a well-thought out, realistic plan to make that a reality.

There is hope!

Yesterday, I wrote an article titled Why I Suggest Avoiding These New Year’s Resolutions which explains how to set goals that will transform your health-related wish into an achievable goal. The steps are very straight-forward and if you want they can be completed between now and New Years  or can be worked through during the month of January so that by the time 83% of people have given up on their New Year’s Resolutions, you will be primed to begin implementing your plan!

What I’d recommend is that you read through the article I wrote yesterday (link directly above) and if you need or want some help designing a plan, I have a special New Year’s SMART goal session that can help.  You can click here to learn more or send me a note using the Contact Me form located on the tab above.

I provide both in-person services in my Coquitlam (British Columbia) office and via Distance Consultation (Skype, phone), so whether you live in the Greater Vancouver area or away, I’d be happy to assist you.

Wishing you and yours the very best for a healthy and happy New Year!

Joy

You can follow me at:

       https://twitter.com/lchfRD

         https://www.facebook.com/BetterByDesignNutrition/

          https://plus.google.com/+JoyYKiddieMScRD

https://www.instagram.com/lchf_rd

 

Copyright ©2018 BetterByDesign Nutrition Ltd.

LEGAL NOTICE: The contents of this blog, including text, images and cited statistics as well as all other material contained here (the “content”) are for information purposes only.  The content is not intended to be a substitute for professional advice, medical diagnosis and/or treatment and is not suitable for self-administration without the knowledge of your physician and regular monitoring by your physician. Do not disregard medical advice and always consult your physician with any questions you may have regarding a medical condition or before implementing anything  you have read or heard in our content.

References

  1. Norcross, JC et al, Auld lang syne: success predictors, change processes, and self-reported outcomes of New Year’s resolvers and nonresolvers. J Clin Psychol. 2002 Apr;58(4):397-405
  2. Lally, P., van Jaarsveld, C. H. M., Potts, H. W. W. and Wardle, J. (2010), How are habits formed: Modelling habit formation in the real world. Eur. J. Soc. Psychol., 40: 998–1009.

Why I Suggest Avoiding These New Year’s Resolutions

Why on earth would a Dietitian suggest to avoid making New Year’s resolutions to lose weight, exercise more or eat healthier? The reason is that research indicates that half of those that make these types of health-related  New Year’s Resolutions give up just a week into the new year [1] and by the end of January, 83% will have given up [1]. A New Year’s resolution will see only 8% of people reach their goal, with 92% failing[1]. I want people succeed and since it takes approximately 66 days (that’s more than 2 months!) to create a new habit[2] having my support during the critical planning and implementing stage can make a huge difference!

Rather than making a New Year’s resolution, I recommend that people set SMART goals. Ideally if they want to lose weight during the new year, they will have done this in November and begun to implement their plan in December but it’s not too late!  Setting SMART goals in January and beginning to implement them in February works great!

What are “SMART” goals?

SMART is an acronym for goals that are specific, measurable, achievable, relevant and time-bound.

SMART goals

Goals that are Specific

When setting a goal, it needs to be specific.

If your goal is weight loss, then think about exactly what you are trying to accomplish in terms of how much weight in what amount of time.

If your goal is to exercise more, than decide how often you will exercise, for how long at each session , and what types of exercise you will do (weights, resistance, cardio, etc).

If your goal is to eat healthier, then define what that means to you.  Is it “clean eating”; then what is that, exactly?  If you want to eat to lower your blood sugar or cholesterol or blood pressure or to reduce your risk to specific diseases that run in your family, then you need to define it that way.

Goals that are measurable

When setting a goal it is necessary to define what is going to be used to measure whether the goal will have been met.  If the goal is weight loss, then it can be measured by a certain number of pounds or kilos lost or by a specific waist to height ratio.

If the goal is to exercise more, then it can be measured in times per week at the gym, the number of hours spent exercising each week or how many fitness classes you attend each month.

If the goal is to eat healthier, then how are you going to measure that?  It could be measured in how many times you eat fatty fish (like salmon or mackerel) in a week, or how many grams of carbohydrate you eat per day or how many servings of leafy green vegetables you eat per day.  How will you measure it?

What does success look like?

Goals that are achievable

For goals to be be successfully accomplished, they need to be realistically achievable from the beginning, otherwise people get discouraged and give up.

When it comes to setting weight loss goals, it is not uncommon for people to decide they want to lose 20 pounds in a month before a special social function, but is it achievable?

When it comes to exercising more, is it achievable to set a goal of working out an hour a day, 7 days per week or is there a different goal that is more likely to be achievable, but will still keep you progressing?

It’s the same with eating healthier; the goal needs to be achievable.  When I started my personal weight loss and health-recovery journey in March 2017, one of the goals I set was to put my Type 2 Diabetes into remission by a year. Based on the research and how I decided to eat, that was achievable. It actuality it took me 13 months to accomplish, but I was not discouraged that I didn’t actually achieve it in the time frame I planned because the goal was achievable. I was close at a year, just not “there” yet.

Goals that are relevant or realistic

For a goal to be relevant it needs to fit within a person’s broader goals.

If I have a goal to lose weight but I have a larger goal to eat with my kids, then I need to plan to make food for myself that is the same as what I make for them, with some modifications for my weight loss goals

If one of my goals is to spend more time with my kids in the evening then planning to go running each evening as a way of exercising more does not fit within my broader goals. If my goal is to buy only locally-sourced food and I want to eat mangoes as part of my plan to eat healthier, I will face challenges if I live in the northern US or Canada and it’s wintertime. We need to know our broader goals and set our individual ones in that context.

For a goal to be realistic it needs to be achievable and for this step, it is often best to consult someone that would know.

Goals that are time-bound

Setting a goal to “lose weight” is one thing.  That’s pretty generic.  Setting a goal to lose a given amount of weight in a specific amount of time means that a lot of planning and implementing needs to occur for that goal to be successfully realized.  It is the planning and implementing to achieve a specific, measurable, achievable and realistic goal in a specific time-frame that makes it successful.

A Dietitian’s Journey – SMART Goals

Back in March 2017 when I set out to restore my own health and lose weight, these were the goals that I set;

(1) blood sugar in the non-diabetic range

(2) normal blood pressure

(3) normal / ideal cholesterol levels

(4) a waist circumference in the “at or below” recommended values of the Heart and Stroke Foundation

While they don’t appear as SMART goals, as a Dietitian I knew what the “normal range” for these was and the time-frame I set was one year.

At the one year mark, my progress report as posted on Diet Doctor on March 14, 2018:

I did reach my goal of having my waist circumference at or below the recommended values of the Heart and Stroke Foundation, but still had a way to go to get it in a healthier range based on waist to height ratio;

I have not yet reached a low-risk waist circumference (one where my waist circumference is half my height).  I still have to lose another 3 inches to lose (having already lost 8 inches!), so however many pounds I need to lose to get there, is how much longer I have to go.

I am guessing that will be in about 20-25 pounds which may take another 6 months or so, but I’m not really concerned about the time because this “journey” is about me getting healthy and lowering my risk factors for heart attack and stroke, and any amount of time it takes is what it will take.

It took years to make myself that metabolically unhealthy and it will take time for me to get to a healthy body weight and become as metabolically ‘well’ as possible.

(from “A Dietitian’s Journey”)

As it turned out, it was only a week ago last Monday that I finally got to a place where my waist circumference was half my height; 8 months after my first year update. That was 2 months more than I thought it would take, but only 20 pounds more that I needed to lose to accomplish it, so I was close.

Was I discouraged at 6 months when I hadn’t “arrived”?

No, because  from the beginning my goals were SMART which made them rooted in what was possible.

I was very specific as to what I wanted to accomplish, how I was going to measure success, that the goals were achievable based on the available research, were relevant to my larger life goals and were time-bound. That said, just because reaching my goals was possible did not guarantee that I would achieve all of them in the time I planned. I achieved most of them within a year, and achieved the rest with a little more patience and time.

Some final thoughts…

Instead of setting a New Year’s resolution to lose weight, exercise more or eat healthier, perhaps spend the month of January setting very specific SMART goals. At the end of January, when 83% of the people have already given up on their New Year’s resolutions to improve their health, you will about to implement your well-thought out, realistic plan and may have already engaged me, as a Dietitian or a personalized trainer to help you implement it. Now THAT is a whole lot more than wishful thinking!

  1. “What specifically do I want to accomplish”
  2. “How will I measure success?”
  3. Is this achievable? Do I know? Where can I find out?
  4. Is this goal relevant to my larger life goals?
  5. What time-frame do I want to accomplish this by?

Write out what you can about each of your goal(s) and then if achieving your goal will take more than a few months or a year or more to achieve, then I’d recommend engaging a professional to support you.

When it comes to weight loss and eating healthier I can certainly help, and if your goal is to lower risk to specific types of diseases I can certainly share with you the information I have gleaned as to which types of exercise are the most helpful in that regard.

If you want to consult with me to help you set SMART goals, please click here to learn more or send me a note using the Contact Me form located on the tab above. I provide in-person services in my Coquitlam (British Columbia) office or via Distance Consultation (Skype, phone) so whether you live close or far away, I’m happy to help.

If you would like more information about my hourly services or the packages I offer, please click on the Services tab above and if you have questions about those, please send me a note using the Contact Me form and I’ll reply when I am able.

Wishing you the very best for a  healthy and happy New Year!

Joy

You can follow me at:

       https://twitter.com/lchfRD

         https://www.facebook.com/BetterByDesignNutrition/

          https://plus.google.com/+JoyYKiddieMScRD

https://www.instagram.com/lchf_rd

 

Copyright ©2018 BetterByDesign Nutrition Ltd.

LEGAL NOTICE: The contents of this blog, including text, images and cited statistics as well as all other material contained here (the “content”) are for information purposes only.  The content is not intended to be a substitute for professional advice, medical diagnosis and/or treatment and is not suitable for self-administration without the knowledge of your physician and regular monitoring by your physician. Do not disregard medical advice and always consult your physician with any questions you may have regarding a medical condition or before implementing anything  you have read or heard in our content.

References

  1. Norcross, JC et al, Auld lang syne: success predictors, change processes, and self-reported outcomes of New Year’s resolvers and nonresolvers. J Clin Psychol. 2002 Apr;58(4):397-405
  2. Lally, P., van Jaarsveld, C. H. M., Potts, H. W. W. and Wardle, J. (2010), How are habits formed: Modelling habit formation in the real world. Eur. J. Soc. Psychol., 40: 998–1009.

American Diabetes Association Low Carb Recommendations – one page printout

This post contains a one page downloadable printout that you can bring to your doctor or other healthcare professional which summarizes the American Diabetes Association’s new clinical recommendations concerning the use of low carbohydrate diets for adults with Type 2 Diabetes and is based on;

(1) the ADA’s October 2018 joint Position Statement with the European Association for the Study of Diabetes (EASD) which approved use of a low carbohydrate diet of <130 g of carbohydrate/day (<26% of daily calories as carbohydrate) as Medical Nutrition Therapy (MNT) for adults with Type 2 Diabetes [1]. You can read about this position statement here.

and

(2) the ADA’s recently released 2019 Standards of Medical Care in Diabetes – Lifestyle Management [2] which includes the use of low carbohydrate diets as Nutrition Therapy and which reflects the organization’s emphasizes on a patient-centered, individualized approach. You can read about the updated Standards of Care here.

This one-page printout has the references that the ADA used to support their recommendations so that your doctor or other healthcare professional can verify them and summarizes the conclusion of the American Diabetes Association [2] that a low carbohydrate diet may result in

(a) lower blood sugar levels 
(b) lower the use of blood sugar lowering medication
and
(c) is effective for weight loss

References include the one-year study data by Virta Health [3] which used a ketogenic approach (<30g carbohydrate/day), as well as two other studies [4,5].


Click here to download the one-page printout to bring to your doctor or other healthcare professional.

 

 

 

You can follow me at:

       https://twitter.com/lchfRD

         https://www.facebook.com/BetterByDesignNutrition/

          https://plus.google.com/+JoyYKiddieMScRD

https://www.instagram.com/lchf_rd

 

Copyright ©2018 BetterByDesign Nutrition Ltd.

LEGAL NOTICE: The contents of this blog, including text, images and cited statistics as well as all other material contained here (the “content”) are for information purposes only.  The content is not intended to be a substitute for professional advice, medical diagnosis and/or treatment and is not suitable for self-administration without the knowledge of your physician and regular monitoring by your physician. Do not disregard medical advice and always consult your physician with any questions you may have regarding a medical condition or before implementing anything  you have read or heard in our content.

References

  1. Davies M.J., D’Alessio D.A., Fradkin J., et al, Management of Hyperglycemia in Type 2 Diabetes, 2018. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD), Diabetes Care, October 2018, https://doi.org/10.2337/dci18-0033
  2. American Diabetes Association, Lifestyle Management Standards of Medical Care in Diabetes – 2019. Available at: http://care.diabetesjournals.org/content/42/Supplement_1. Accessed: Dec. 17, 2018.
  3. Hallberg SJ, McKenzie AL, Williams PT, et al. Effectiveness and safety of a novel care model for the management of type 2 diabetes at 1 year: an open-label, non-randomized, controlled study. Diabetes Ther 2018;9:583–612
  4. Saslow LR, Daubenmier JJ, Moskowitz JT, et al. Twelve-month outcomes of a randomized trial of a moderate-carbohydrate versus very low-carbohydrate diet in overweight adults with type 2 diabetes mellitus or prediabetes. Nutr Diabetes 2017;7:304
  5. Sainsbury E, Kizirian NV, Partridge SR, Gill T, Colagiuri S, Gibson AA. Effect of dietary carbohydrate restriction on glycemic control in adults with diabetes: a systematic review and meta-analysis. Diabetes Res Clin Pract 2018;139:239–252

 

Low Carb Diet in 2019 American Diabetes Association Standards of Care

On Monday, December 17, 2018, the American Diabetes Association released its new 2019 Standards of Medical Care in Diabetes including its Lifestyle Management Standards of Care which includes use of a low carbohydrate diet saying it may result in lower blood sugar levels and also has the potential to lower the use of blood sugar lowering medications[1] in those with Type 2 Diabetes. In support, they cite the one-year study data by Virta Health[2], as well as two other studies [3,4].

“…research indicates that low carbohydrate eating plans may result in improved glycemia and have the potential to reduce antihyperglycemic medications for individuals with type 2 diabetes…”

The new 2019 Standards of Care reflect the American Diabetes Association’s change in approach which began in 2018 to revise the guide throughout the year as new scientific evidence warrants it, rather than to wait annually to update guidelines. Towards that end, in November 2018, the American Diabetes Association launched a joint partnership with the American Heart Association to raise awareness about the increased risk of cardiovascular disease for those diagnosed with Type 2 Diabetes and in October, the American Diabetes Association in conjunction with the European Association for the Study of Diabetes (EASD) released a joint Position Statement which approved use of a low carbohydrate diet as Medical Nutrition Therapy (MNT) for adults with Type 2 Diabetes (you can read more about that here).

The American Diabetes Association’s newly released 2019 Lifestyle Management  Standards of Medical Care in Diabetes builds on this joint consensus paper released with the EASD by including use of a low carbohydrate diet in the section on Nutrition Therapy where it emphasizes a patient-centered, individualized approach based on people’s current eating patterns, personal preferences and metabolic goals;

“Evidence suggests that there is not an ideal percentage of calories from carbohydrate, protein, and fat for all people with diabetes. Therefore, macronutrient distribution should be based on an individualized  assessment of current eating patterns, preferences, and metabolic goals. Consider personal preferences (e.g., tradition, culture, religion, health beliefs and goals, economics) as well as metabolic goals when working
with individuals to determine the best eating pattern for them.”

The ADA deemphasizes a focus on specific nutrients; whether fat or carbohydrate and stresses that a variety of eating patterns are acceptable.

“Emphasis should be on healthful eating patterns containing nutrient-dense foods, with less focus on specific nutrients. A variety of eating patterns are acceptable for the management of diabetes”.

The Lifestyle Management Standards of Care underscores the importance of having a Registered Dietitian involved in the process of assessing a person’s overall nutritional status, as well designing an individualized Meal Plan for them that is tailored to their health, cooking skills, financial resources, food preferences and health goals and that is coordinated with the person’s physician who is responsible for prescribing and adjusting their medications.

“…a referral to an RD or registered dietitian nutritionist (RDN)
is essential to assess the overall nutrition status of, and to work collaboratively with, the patient to create a personalized meal plan that considers the individual’s health status, skills, resources, food preferences, and health goals to coordinate
and align with the overall treatment plan including physical activity and medication.”

They outline a few eating patterns that are examples of  healthful eating
patterns that have shown positive results in research, including the Mediterranean diet, the DASH diet, plant-based diets and add that

“low-carbohydrate eating plans may result in improved glycemia (blood sugar) and have the potential to reduce anti-hyperglycemic medications (medications to lower blood sugar) for individuals with type 2 diabetes.”

The documents emphasizes again that individualized meal planning should focus on personal preferences, needs, and goals rather than focusing on any specific macronutrient distribution.

Without citing any references, the Standards of Care state that there are challenges with the ability of people to continue to follow a low carbohydrate diet long term and as a result that it’s important to reassess people who adopt this approach.

“As research studies on some low-carbohydrate eating plans generally indicate challenges with long-term sustainability, it is important to reassess and individualize meal plan guidance regularly for those interested in this approach.”

It’s unfortunate that the ADA did not have access to the very recently released two-year data from Virta Health’s study which showed a 74% retention rate in the low carb intervention.

The ADA takes the position that a low carbohydrate meal plan is not recommended for women who are pregnant or breastfeeding, people who have- or are at risk for eating disorders, or have kidney disease and that caution should be taken with those taking SGLT2 inhibitor medication* for management of Type 2 Diabetes, as there is the potential risk of a condition known as diabetic ketoacidosis (DKA).

*This article outlines the risk of SGLT2 inhibitors, as well as other medications used to treat high blood pressure and some mental health disorders that need supervision when following a low-carbohydrate diet.

Low Carbohydrate Diets for Weight Loss

The ADA’s new 2019 Lifestyle Management Standards of Care also includes use of a low carbohydrate diet in the Weight Management section of the document, which underscores the benefit in blood sugar control, blood pressure and cholesterol (lipids) of weight loss of at least 5% body weight in overweight and obese individuals and that weight loss goals of 15% body weight may be appropriate to maximize benefit.

In this section dealing with Medical Nutrition Therapy (MNT), the role of a Registered Dietitian (RD) / Registered Dietitian Nutritionist (RDN) is emphasized;

“MNT guidance from an RD/RDN with expertise in diabetes and weight management, throughout the course of a structured weight loss plan, is strongly recommended.”

The ADA’s Lifestyle Management Standards of Care indicates that studies have demonstrated that a variety of eating plans with different macronutrient composition can be used safely and effectively for 1-2 years to achieve weight loss in people with Diabetes, including the use of a low-carbohydrate diet and that no single approach has been proven to be best;

“Studies have demonstrated that a variety of eating plans, varying in macronutrient composition, can be used effectively and safely in the short term (1–2 years) to achieve weight loss in people with diabetes. This includes structured low-calorie meal plans that include meal replacements and the  Mediterranean eating pattern, as well as low-carbohydrate meal plans. However, no single approach has been proven to be consistently superior.”

It is concluded that more study is needed to know which of these dietary patterns is best when used long-term and which is best accepted by patients over a long period of time.

“more data are needed to identify and validate those meal plans that are optimal with respect to long-term outcomes as well as patient acceptability.”

In the section dealing specifically with Carbohydrates, it is indicated that for people with Type 2 Diabetes or prediabetes that low-carbohydrate eating plans show the potential to improve blood sugar control and cholesterol outcomes for up to one year, and that part of the problem in interpreting low-carbohydrate research has been due to the wide range of definitions of what “low-carbohydrate” is (i.e. <130 g of carbohydrate, <50 g carbohydrate).

Point of Interest: No where in the Lifestyle Management Standards of Medical Care in Diabetes does the American Diabetes Association define what they mean by "low carbohydrate diet".  The fact that they cite the one-year study data from Virta Health[2] (see above) as evidence for safety and efficacy in lowering blood sugar and Diabetes medication usage when that study clearly employs a ketogenic approach is most interesting.

” For people with type 2 diabetes or prediabetes, low-carbohydrate eating plans show potential to improve glycemia and lipid outcomes for up to 1 year. Part of the challenge in interpreting low-carbohydrate research has been due to the wide range of definitions for a low-carbohydrate eating plan.”

The Standards of care stated that because most people with Diabetes say they eat between 44–46% of calories as carbohydrate, and that changing people’s usual macronutrient intake usually results in them going back to how they ate before, that they recommend designing meal plans based on the person’s normal macronutrient distribution, because it is most likely to result in long-term maintenance.

“Most individuals with diabetes report a moderate intake of carbohydrate (44–46% of total calories). Efforts to modify habitual eating patterns are often unsuccessful in the long term; people generally go back to their usual macronutrient distribution. Thus, the recommended approach is to individualize meal plans to meet caloric goals with a macronutrient distribution that is more consistent with the individual’s usual intake to increase the likelihood for long-term maintenance.”

NOTE: Most people are likely to indicate they eat within the recommended range of carbohydrate intake (45-65% of calories as carbohydrate) because that is how they were counselled when they were diagnosed with Type 2 Diabetes, but stating that they should continue to eat that way because they are most likely to be compliant makes no sense. If a person realizes they are not able to meet optimal blood sugar levels eating that level of carbohydrate intake and are interested and motivated to lower it, then as healthcare professionals, we need to be equipped to support that in an evidenced-based manner.

In this section on Carbohydrates, it was emphasized that;

“…both children and adults with Diabetes are encouraged to minimize intake of refined carbohydrates and added sugars

and

“The consumption of sugar-sweetened beverages (including  fruit juices) and processed “low-fat” or “nonfat” food products with high amounts of refined grains and added sugars is strongly discouraged.”

Protein

With respect to protein intake, it was emphasized that;

(1) there isn’t any evidence to suggest that adjusting protein intake from 1–1.5 g/kg body weight/day (15–20% total calories) will improve health.

(2) research is inconclusive regarding the ideal amount of dietary protein to optimize either blood sugar control or cardiovascular disease (CVD).

(3) “some research has found successful management of type 2 diabetes with meal plans including slightly higher levels of protein (20–30%), which may contribute to increased satiety.”

Caution for those with diabetic kidney disease (i.e. urine albumin and/or reduced glomerular filtration rate) advise that dietary protein should be maintained at the recommended daily allowance of 0.8 g/kg body weight/day.

Fats

The Standards of Care acknowledged that the ideal amount of dietary fat for individuals with diabetes is controversial and underscored that the National Academy of Medicine has defined an acceptable macronutrient distribution for total fat for all adults to be 20–35% of total calorie intake. They stated that the type of fats consumed are more important than the total amount of fat when looking at metabolic goals and cardiovascular (CVD) risk and recommended that the percentage of total calories from saturated fats be limited. It was recommended that people with Diabetes follow the same guidelines as the general population when it comes to intakes of saturated fat, dietary cholesterol and trans fat and they recommended a focus on eating polyunsaturated and monounsaturated fats for improved glycemic  (blood sugar) control and blood lipids (cholesterol) and that there does not seem to be a CVD benefit of supplementing with omega-3 polyunsaturated fatty acids.

Other Points of Interest

It is interesting that the Lifestyle Management Standards of Care indicated that the literature concerning Glycemic Index (GI) and Glycemic Load (GL) in individuals with Diabetes often yields conflicting results and that “studies longer than 12 weeks report no significant influence of glycemic index or glycemic load independent of weight loss on A1C”.

Conclusion

The American Diabetes Associations 2019 Lifestyle Management Standards of Medical Care in Diabetes emphasis on a patient-centered, individualized approach is under-girded by an acknowledgment that based on the current evidence, a low-carbohydrate diet is both safe and effective used as Medical Nutrition Therapy for up to two years in adults in order to lower blood sugar, reduce Diabetes medication usage and support weight loss.


I’m a Registered Dietitian that has years of experience working with non-insulin dependent individuals with Type 2 Diabetes. I can assess your overall nutritional status, review your personal and family medical background and lifestyle habits and create a individualized Meal Plan just for you that considers your health status, cooking skills, food preferences, resources as well as your health and weight goals. I even offer a single package (the Complete Assessment Package) that will do just that.

I provide in-person services in my Coquitlam (British Columbia) office as well as via Distance Consultation (Skype, long distance) for those outside of the Lower Mainland area.

You can find out more about the hourly consultations and packages I offer by clicking on the Services tab above and if you have questions, feel free to send me a note using the Contact Me form, and I will reply as soon as I am able.

To your good health!

Joy

You can follow me at:

       https://twitter.com/lchfRD

         https://www.facebook.com/BetterByDesignNutrition/

          https://plus.google.com/+JoyYKiddieMScRD

https://www.instagram.com/lchf_rd

 

Copyright ©2018 BetterByDesign Nutrition Ltd.

LEGAL NOTICE: The contents of this blog, including text, images and cited statistics as well as all other material contained here (the “content”) are for information purposes only.  The content is not intended to be a substitute for professional advice, medical diagnosis and/or treatment and is not suitable for self-administration without the knowledge of your physician and regular monitoring by your physician. Do not disregard medical advice and always consult your physician with any questions you may have regarding a medical condition or before implementing anything  you have read or heard in our content.

References

  1. American Diabetes Association, Lifestyle Management Standards of Medical Care in Diabetes – 2019. Available at: http://care.diabetesjournals.org/content/42/Supplement_1. Accessed: Dec. 17, 2018.
  2. Hallberg SJ, McKenzie AL, Williams PT, et al. Effectiveness and safety of a novel care model for the management of type 2 diabetes at 1 year: an  open-label, non-randomized, controlled study. Diabetes Ther 2018;9:583–612
  3. Saslow LR, Daubenmier JJ, Moskowitz JT, et al. Twelve-month outcomes of a randomized trial of a moderate-carbohydrate versus very low-carbohydrate diet in overweight adults with type 2 diabetes mellitus or prediabetes. Nutr Diabetes 2017;7:304
  4. Sainsbury E, Kizirian NV, Partridge SR, Gill T, Colagiuri S, Gibson AA. Effect of dietary carbohydrate restriction on glycemic control in adults with diabetes: a systematic review and meta-analysis. Diabetes Res Clin Pract 2018;139:239–252

New Long-Term Data on Benefits of a Ketogenic Diet

A pre-publication of the long-awaited 2 year update from the Virta Health  study has just been released[1] and indicates that there were improvements in body weight while following a ketogenic diet the first year which were largely sustained into the second year, with some minor rebound. Improved blood sugar control was also largely sustained and that significant metabolic markers and health improvements occurred using a ketogenic approach over the usual care model approach.

This article briefly outlines the baseline data and compares the newly-released two-year data to their one-year data as well as comparing the 2 year data using a ketogenic diet to the data from the “usual care” control group.

Baseline Details

There were 238 participants enrolled in the continuous care intervention at the beginning of the study and all had a diagnosis of Type 2 Diabetes (T2D) when the study began with an average HbA1c of 7.6% ±1.5%. Participants ranged in age from 46 – 62 years of age (mean age = 54 years). Sixty-seven (67%) of participants were women and 33% were men.

Weight ranged from 200 pounds to 314 pounds (117±26 kg), with an average weight of 257 pounds (117 kg).  Average Body Mass Index (BMI) was 41 kg·m-2 (class III obesity) ±9 kg·m-2, with 82% categorized as obese.

The majority of participants (87%) were taking at least 1 glycemic (blood sugar) control medication at the beginning of the study.

Intervention

Each participant in the continuous care group received an Individualized Meal Plan for nutritional ketosis, behavioral and social support, bio-marker tracking tools and ongoing care from a health coach with medication management by a physician.

Subjects typically required <30 g per day of total dietary carbohydrate. Daily protein intake was targeted to a level of 1.5 g / kg based on ideal body weight and participants were coached to incorporate dietary fats until they were no longer hungry (satiety). Other aspects of the diet were individually tailored to ensure safety, effectiveness and satisfaction, including consumption of 3-5 servings of non-starchy vegetables and enough mineral and fluid intake. Use of time restricted eating or intermittent fasting by subjects was not mentioned. The blood ketone level of β-hydroxybutyrate (BHB) was monitored using a portable, handheld device.

Participants

There were 238 participants enrolled in the continuous care intervention at the beginning of the study. At the end of a year, 218 participants (83%) were still enrolled in the  continuous care intervention group. At the end of two years, 194 participants (74%) remained enrolled in the continuous care intervention group.

There were no reported serious adverse events between one and two years in this study that were attributed to the dietary intervention or that resulted in the need to discontinue participation in the study; including no reported episodes of ketoacidosis or severe hypoglycemia requiring assistance.

Medication Use

At baseline, 87% of participants were taking at least one medication for Diabetes, with ~56% (55.7%) taking Diabetes medications excluding Metfomin. After one year, Type 2 Diabetes medication prescriptions other than Metformin declined from 56% to just below 30%. At two years, Type 2 Diabetes medication prescriptions other than Metformin declined to 27% (26.8%).

Insulin therapy at baseline was 30% (29.8%) and at two-years was 11.3%. Use of sulfonylureas was 23.7% at baseline and was entirely eliminated in the continuous care intervention group at one-years and remained at 0% at two-years.

No changes in use of any Diabetes medication (excluding Metformin) or individual diabetes medication classes were observed in the usual care control group from baseline to 2 years.

Glycosylated Hemoglobin (HbA1C)

At baseline, the average HbA1c level of the intervention group was 7.7%,  with less than 20% of participants having a HbA1c level of <6.5% (with medication usage). On average after one year, participants in the intervention group lowered HbA1c from 7.7% to 6.3%. At two years, HbA1C of participants in the intervention group increased to 6.7%.

By comparison, HbA1C of the usual care control group was 7.5% at baseline, 7.6% at one-year and 7.9% at two years.

Fasting Blood Glucose

At baseline, fasting blood glucose of the intervention group was 164 mg/dl (9.1 mmol/L). On average after one year, participants in the intervention group lowered fasting blood glucose to 127 mg/dl (7.0 mmol/L). At two years, fasting blood glucose of participants in the intervention group increased to 134 mg/dl (7.4 mmol/l).

By comparison,fasting blood glucose of the usual care control group was 151 mg/dl (8.4 mmol/L) at baseline,160 mg/dl (8.9 mmol/L) at one-year and 172 mg/dl (9.5 mmol/L) at two years.

Fasting Insulin

At baseline, fasting insulin of the intervention group was 28 pmol/L(4.4 uU/ml). On average after one year, participants in the intervention group lowered fasting insulin to 16.5 pmol/L (2.4 uU/mL). At two years, fasting insulin of participants in the intervention group was further reduced to 16 pmol/L (2.3 uU/mL).

By comparison, fasting insulin of the usual care control group was also 28 pmol/L(4.4 uU/ml), and at a year was 26.5 pmol/L (3.8 uU/ml) and at two years was 24.2 pmol/L (3.5 uU/ml).

Weight Loss

At baseline, body weight of the intervention group averaged at 115 kg (254 pounds). On average after one year, participants in the intervention group lowered body weight to 100.3 kg  (221 pounds). At two years, body weight of participants in the intervention group increased slightly to 102.6 kg  (226 pounds).

By comparison, body weight of the usual care control group was 111 kg (244 pounds) at baseline, 112 kg (247 pounds) at one-year and stable at two years.

Cholesterol and Triglycerides

LDL-cholesterol

At baseline, LDL cholesterol of the intervention group averaged 103.5 mg/dl (2.68 mmol/L). On average after one year, LDL of participants in the intervention group had increased LDL of 114 mg/dl (2.95 mmol/L). At two years, LDL of participants in the intervention group increased very slightly to 114.5 mg/dl (2.96 mmol/L).

By comparison, LDL cholesterol of the usual care control group was 100 mg/dl (2.59 mmol/L) at baseline, 88.9 mg/dl (2.30 mmol/L) at one year, and 90.0 mg/dl (2.33 mmol/L) at two years.

HDL-cholesterol

At baseline, HDH cholesterol of the intervention group averaged 41.8 mg/dl (1.11 mmol/L). On average after one year, LDL of participants in the intervention group had increased HDL of 49.5 mg/dl (1.28 mmol/L). At two years, HDL of participants in the intervention group were stable at 49.5 mg/dl (1.28 mmol/L).

By comparison, HDL cholesterol of the usual care control group was 38.7 (1.00 mmol/L) mg/dl at baseline, decreased to 37.2 mg/dl (0.96 mmol/L) at one year and 42.5 mg/dl (1.10 mmol/L) at two years.

Triglycerides

At baseline, triglycerides of the intervention group averaged 197.2 mg/dl (2.23 mmol/L). On average after one year, triglycerides of participants in the intervention group had decreased to 148.9 mg/dl (1.68 mmol/L). At two years, triglycerides of participants in the intervention group were slightly higher at 153.3 mg/dl (1.73 mmol/L).

By comparison, triglycerides of the usual care control group was 282.9 (3.19 mmol/L) mg/dl at baseline, increased to 314.5 mg/dl (3.55 mmol/L) at one year and decreased to 209.5 mg/dl (2.37 mmol/L) at two years.

Summary of Results and Significance

The main criticism for use of a ketogenic diet for the management of Type 2 Diabetes is that it is “unsustainable”, however a 74% retention rate of participants into the second year in the study demonstrates that the diet is sustainable long term and that most of the gains achieved in the first year are maintained in the second year.

While HbA1C increased slightly for the intervention group from year one (6.3% to 6.7%), the usual care group had an average HbA1C of 7.6% at one year which increased to 7.9% at two years.

CONCLUSION: While an average HbA1C of 6.7% on a ketogenic diet is not as good as it could be with better dietary adherence, it is significantly better than the 7.9% of the usual care group in this study.

Fasting blood glucose of the intervention group increased slightly from  127 mg/dl (7.0 mmol/L) at one year to 134 mg/dl (7.4 mmol/l) at two years and fasting blood glucose of the usual care group which was 160 mg/dl (8.9 mmol/L) at one-year and 172 mg/dl (9.5 mmol/L) at two years.

CONCLUSION: While an average fasting blood glucose of 134 mg/dl (7.4 mmol/l) at two years on a ketogenic diet is not nearly as good as it could be with better dietary adherence, it is significantly better than the fasting blood glucose of the usual care group which was 172 mg/dl (9.5 mmol/L) at two years.

Fasting insulin in the intervention group decreased from 28 pmol/L(4.4 uU/ml) at baseline to 16 pmol/L (2.3 uU/mL) at two years whereas in the usual care control group, fsting insulin decreased from 28 pmol/L(4.4 uU/ml) at baseline to 24.2 pmol/L (3.5 uU/ml) at to two years.

CONCLUSION: An average fasting insulin value of 16 pmol/L (2.3 uU/mL)  at two years for the ketogenic diet group is significantly better than the average fasting insulin of the usual care control group of 24.2 pmol/L (3.5 uU/ml).

Weight loss in the ketogenic group was 12.4 kg (28 pounds) in two years; most of which was achieved in the first year maintained during the second year, except for very slight increase of 2.3 kg (5 pounds). No weight loss occurred in the usual care group in either the first year or the second year.

CONCLUSION: Use of a ketogenic diet resulted in significant weight loss during the first year which was largely maintained during the second year, whereas the usual care control group did not lose any weight during the course of the study.

LDL cholesterol increased in the ketogenic group from 103.5 mg/dl (2.68 mmol/L) at baseline to 114.5 mg/dl (2.96 mmol/L) at two years, but during the same time period, HDL cholesterol increased from 41.8 mg/dl (1.11 mmol/L) at baseline to 49.5 mg/dl (1.28 mmol/L) at 2 years. In the usual care control group, LDL cholesterol decreased from 100 mg/dl (2.59 mmol/L) at baseline to 90.0 mg/dl (2.33 mmol/L) at two years. HDL cholesterol only increased to 42.5 mg/dl (1.10 mmol/L) at two years from 38.7 (1.00 mmol/L) mg/dl at baseline.

At baseline, triglycerides in the ketogenic group decreased from 197.2 mg/dl (2.23 mmol/L) at baseline to 153.3 mg/dl (1.73 mmol/L) at two-years, and in the usual care control group decreased to 209.5 mg/dl (2.37 mmol/L) at two years from 282.9 (3.19 mmol/L) mg/dl at baseline.

CONCLUSION: Triglyceride to HDL ratio (a proxy measurement for LDL particle size[2,3]) went from 2.01 to 1.35 in the ketogenic intervention group and in the usual care control group only lowered from 3.19 to 2.9.  While a two-year TG:HDL ratio of 1.35 in the ketogenic group is over the recommended 0.87 ratio (which indicates mostly large-fluffy LDL versus small-dense LDL), the 2-year TG:HDL ratio of 2.9 in the usual care control group indicates increased cardiovascular risk compared to the ketogenic intervention group.

This study indicates that improvement in body weight following a ketogenic diet is largely sustained into the second year with some minor rebound. Improved glycemic (blood sugar) control was also largely sustained and that significant metabolic markers and health improvements occurred using a ketogenic approach over the usual care model approach.

This study also establishes that a ketogenic diet is sustainable over the long term.

Personal Reflections

There are many anecdotal results from people such as myself that follow a similar type of dietary intervention in order to improve their health and metabolic markers and through more disciplined adherence have been able to achieve improved results than those reported in this study.

As I posted about after one year following a comparable dietary intervention as the Virta study, I lost 35 pounds in the first year and have lost an additional 15 pounds so far during the first 9 months of the second year. I know of those who have lost even more than I have during the second year, so it is by no means common for weight loss not to continue, if required.

As with participants in the Virta study, in the first year I also lowered my HbA1C to below the cut-off for Type 2 Diabetes (< 6.5%) but did so without any medication support (subjects in the Virta study were able to use Metformin support to achieve their results). Since adding Metformin in July in order to address my high morning fasting glucose resulting from Dawn Phenomena, three quarters the way into my second year, I my three month average blood glucose is ~5.5%.

Based on my lipid panel done in July,  both my LDL and TG were significantly lower than these results and my HDL was also significantly higher but individual genetic variation seems to account largely for those whose LDL increase following a ketogenic diet. As I’ve said in previous articles, the issue is which LDL is increased; the large fluffy ones or the small, dense (atherosclerotic) ones.

Some Final Thoughts…

Each person is unique and each one’s commitment to continuing to follow dietary and lifestyle interventions into the second year and following will largely determine the degree of their long term success.

Those who have been following my personal story to reclaim my own health (called “A Dietitian’s Journey”) will know my degree of commitment is related to having had two girlfriends diet within 3 months of each other and realizing that because I was overweight, had Type 2 Diabetes for a number of years and having added high blood pressure to that mix put me at high risk for heart attack and stroke. Changing my lifestyle was critical in reversing those risks. In addition, the recent diagnosis of one of my parents with Alzheimer’s Disease added to my motivation to continue to improve my blood sugar and blood insulin levels, in order to lower my risk to that as well. But A Dietitian’s Journey is my n=1 (sample set of 1) story. Everybody is different.

What the two-year data from the Virta study shows it that following “usual care” for Type 2 Diabetes does not result in weight loss nor the significant improvement in metabolic health as following a well-designed ketogenic diet does. It’s no wonder that with an average HbA1C of almost 8% and fasting blood glucose of 172 mg/dl (9.5 mmol/L) that “usual care” results in Type 2 Diabetes being a “chronic, progressive disease”.  As indicated by the results of the ketogenic intervention group, it does not have to be that way.

If you are seeking to improve your own health, metabolic markers or body weight and would like to do so using a low carbohydrate approach, I can help. To find out more about the packages I offer, please have a look under the Services tab or in the Shop.

If you have questions, please send me a note using the Contact Me form on this web page and I will reply as soon as I’m able.

To our good health!

Joy

You can follow me at:

       https://twitter.com/lchfRD

         https://www.facebook.com/BetterByDesignNutrition/

          https://plus.google.com/+JoyYKiddieMScRD

https://www.instagram.com/lchf_rd

 

Copyright ©2018  BetterByDesign Nutrition Ltd.

LEGAL NOTICE: The contents of this blog, including text, images and cited statistics as well as all other material contained here (the “content”) are for information purposes only.  The content is not intended to be a substitute for professional advice, medical diagnosis and/or treatment and is not suitable for self-administration without the knowledge of your physician and regular monitoring by your physician. Do not disregard medical advice and always consult your physician with any questions you may have regarding a medical condition or before implementing anything  you have read or heard in our content.

 

References

  1. Athinarayanan SJ, Adams RN, Hallberg SJ et al, Long-Term Effects of a Novel Continuous Remote Care Intervention Including Nutritional Ketosis for the Management of Type 2 Diabetes: A 2-year Non-randomized Clinical Trial. bioRxiv preprint first posted online Nov. 28, 2018; doi: http://dx.doi.org/10.1101/476275.
  2. Bittner V, Johnson BD, Zineh I, Rogers WJ, Vido D, Marroquin
    OC, Bairey-Merz CN, Sopko G (2009) The triglyceride/highdensity
    lipoprotein cholesterol ratio predicts all-cause mortality
    in women with suspected myocardial ischemia: a report from the
    Women’s Ischemia Syndrome Evaluation (WISE). Am Heart J
    157:548–555
  3. Yokoyama, K., Tani, S., Matsuo, R., & Matsumoto, N. (2018). Increased triglyceride/high-density lipoprotein cholesterol ratio may be associated with reduction in the low-density lipoprotein particle size: assessment of atherosclerotic cardiovascular disease risk. Heart and Vessels.

The Difference Between Reversal and Remission of Type 2 Diabetes

Some speak of having “reversed” Type 2 Diabetes (T2D) as a result of dietary changes whereas others refer to having achieved “remission“. What is the difference and why is the distinction important?

What is meant by Type 2 Diabetes “reversal”

Reversal” of a disease implies that whatever was causing it is now gone and is synonymous with using the term “cured”.  In the case of someone with Type 2 Diabetes, reversal would mean that the person can now eat a standard diet and still maintain normal blood sugar levels. But does that actually occur? Or are blood sugar levels normal only while eating a diet that is appropriate for someone who is Diabetic, such as a low carbohydrate or ketogenic diet, or while taking medications such as Metformin?

If blood sugar is only normal while eating a therapeutic diet or taking medication then this is not reversal of the disease process, but remission of symptoms.

We do see Type 2 Diabetes reversal in a majority of T2D patients who have undergone a specific kind of gastric bypass surgery called Roux-en-Y; with 85% having achieving normal blood sugar levels within weeks of having the surgery, without taking any blood sugar lowering medications or following any special diet[1]. The mechanism that is thought to make Type 2 Diabetes reversal possible with this type of surgery are (a) that the operation results in more of the incretin hormone GIP being released in the upper part of the gut (duodemum, proximal jejunum) which results in less insulin resistance [2,3] or (b) that the presence of food in lower gut (terminal ilium, colon) stimulates the lower incretin hormone GLP-1, which results in more insulin being secreted [3], which lowers blood sugar levels.

Is Type 2 Diabetes “reversal” possible with diet alone?

It is currently believed that T2D may be reversible by non-surgical intervention if diagnosed very early on in the progression of the disease.

One matter that needs to be overcome is that both the mass and function of the β-cells of the pancreas that produce insulin are thought to be reduced by 50% by the time someone is diagnosed with Type 2 Diabetes [5]. Furthermore, the β-cells are thought to continue to deteriorate the longer a person has Type 2 Diabetes.

It is unknown for how long or at what stage T2D becomes irreversible [6].

What is meant by Type 2 Diabetes “remission”

There is evidence that indicates that weight loss of ~15 kg (33 pounds) can result in remission of Type 2 Diabetes symptoms and that β-cell function can be restored  to some degree either by (a) dormant β-cells being reactivated through a variety of means or (b) by existing β-cells functioning better [6].

Type 2 Diabetes “reversal” defined

In 2009, the American Diabetes Association defined Type 2 Diabetes partial remission, complete remission and prolonged remission as follows;

Remission is defined as being able to maintain blood sugar below the Diabetic range without currently taking medications to lower blood sugar and remission can classified as either partialcomplete or prolonged.

Partial remission is having blood sugar that does not meet the classification for Type 2 Diabetes; i.e. either HbA1C < 6.5% and/or fasting blood glucose 5.5 – 6.9 mmol/l (100–125 mg/dl) for at least 1 year while not taking any medications to lower blood glucose.

Complete remission is a return to normal glucose values i.e. HbA1C <6.0%, and/or fasting blood glucose < 5.6 mmol/L (100 mg/dl) for at least 1 year while not taking any medications to lower blood glucose.

Prolonged remission is a return to normal glucose values (i.e.
HbA1C <6.0%, and/or fasting blood glucose < 5.6 mmol/L (100 mg/dl) for at least 5 years while not taking any medications to lower blood glucose.

Remission can be achieved after bariatric surgery such as the Roux-en-Y procedure outlined above or with dietary and lifestyle changes such as a low-carbohydrate or ketogenic diet, weight loss and exercise.

According the American Diabetes Association, people who are able to achieve normal blood sugar through diet, weight loss and exercise but also take blood sugar lowering medication such as Metformin do not meet the criteria for either partial remission or complete remission.*

Those who have achieved normal blood sugar levels as a result of following a low-carbohydrate or ketogenic diet and are also taking the medication Metformin are sometimes referred to in published studies as having “reversed” their Type 2 Diabetes.  I think this is problematic because clearly if these people go back to eating a standard diet again, their blood sugar would not remain normal. As well, in some well-designed ketogenic diet studies subjects are allowed to use Metformin but no other blood sugar-reducing medication, but based on the American Diabetes Association definition the use of Metformin which helps regulate blood sugar (largely via reducing gluconeogenesis of the liver and making the muscles less insulin resistant) precludes these cases from being referred to as either partial remission or complete remission*.

Don’t get me wrong; having normal blood sugar (and insulin) levels as the result of a well-designed low carbohydrate or ketogenic diet with or without the use of Metformin enables people to reap significant health benefits and lower their risk of the chronic diseases related to hyperglycemia (high blood sugar) and hyperinsulinemia (high circulating levels of insulin) but it’s not reversal unless the people can then eat a standard diet without an abnormal glucose response.  It is normal glycemic control achieved through diet with or without the use of Metformin. Perhaps a term such as “partial remission with Metformin support” would be a more accurate descriptor.

Some final thoughts…

I think it’s important what terms we use.

There are genuine cases of Type 2 Diabetes “reversal” and we should use that term for those who can now eat a standard diet and maintain normal blood sugar levels, without the use of any medication or diet.

There are also genuine cases of “partial remission” or “complete remission” according to the American Diabetes Association definition that are a result of dietary and lifestyle changes and these terms should be reserved for cases where the defined criteria is met.

There are also genuine cases of “partial remission with Metformin support” that have been achieved as the result of people implementing dietary and lifestyle changes plus the use of Metformin that should be acknowledged and celebrated, but calling these either “Type 2 Diabetes reversal” or “Type 2 Diabetes remission” is confusing, at best.

Yes, Type 2 Diabetes a) reversal, b) partial remission and complete remission as well as c) partial remission with Metformin support are all possible. It may well be that people such as myself who had been Type 2 Diabetic for many, many years can eventually transition to genuine partial remission with eventual discontinuation of Metformin. That is my hope, at any rate!  The bottom line is that maintaining normal blood glucose levels and normal circulating levels of insulin is necessary in order to put the symptoms of Type 2 Diabetes into remission, as well as to reduce the risks to the chronic diseases associated with high blood sugar and insulin levels — and for that there are well-designed dietary and lifestyle changes. This is where I can help.

If you have Type 2 Diabetes or have been diagnosed as being pre-diabetic (which is the final stage before a diagnosis, not a “warning sign” — more about that here) and would like to work toward putting your symptoms into remission, then please send me a note using the Contact Me form above to find out more about how I can help.

I offer both in-person and Distance Consultation services (via Skype or long distance phone) and would be glad to help you get started as well as support you as you achieve your health and weight loss goals.

To yours and my good health!

Joy

You can follow me at:

       https://twitter.com/lchfRD

         https://www.facebook.com/BetterByDesignNutrition/

          https://plus.google.com/+JoyYKiddieMScRD

https://www.instagram.com/lchf_rd

 

Copyright ©2018 BetterByDesign Nutrition Ltd.

LEGAL NOTICE: The contents of this blog, including text, images and cited statistics as well as all other material contained here (the “content”) are for information purposes only.  The content is not intended to be a substitute for professional advice, medical diagnosis and/or treatment and is not suitable for self-administration without the knowledge of your physician and regular monitoring by your physician. Do not disregard medical advice and always consult your physician with any questions you may have regarding a medical condition or before implementing anything  you have read or heard in our content.

References

  1. Xiong, S. W., Cao, J., Liu, X. M., Deng, X. M., Liu, Z., & Zhang, F. T. (2015). Effect of Modified Roux-en-Y Gastric Bypass Surgery on GLP-1, GIP in Patients with Type 2 Diabetes Mellitus. Gastroenterology research and practice2015, 625196.
  2. Schauer P. R., Kashyap S. R., Wolski K., et al. Bariatric surgery versus intensive medical therapy in obese patients with diabetes. The New England Journal of Medicine2012;366(17):1567–1576
  3. Lee W. J., Chong K., Ser K. H., et al. Gastric bypass vs sleeve gastrectomy for type 2 diabetes mellitus: a randomized controlled trial. Archives of Surgery2011;146(2):143–148.
  4. Laferrère B., Heshka S., Wang K., et al. Incretin levels and effect are markedly enhanced 1 month after Roux-en-Y gastric bypass surgery in obese patients with type 2 diabetes. Diabetes Care2007;30(7):1709–1716
  5. Taylor R. Banting Memorial lecture 2012: reversing the twin cycles of type 2 diabetes. Diabet Med. 2013;30:267-275
  6. Watson J., Can Diet Reverse Type 2 Diabetes? December 12, 2018 https://www.medscape.com/viewarticles/905409_print

Insulin Resistance, Hyperinsulinemia and Hyperglycemia

The distinction between insulin resistance and hyperinsulinemia is often unclear because these terms are frequently lumped together under “insulin resistance“, but they are separate concepts. Hyperinsulinemia (“too high insulin”) is when there is too much insulin secreted from the pancreas in response to high levels of blood sugar (hyperglycemia) and insulin resistance is where the taking in of that glucose into the cells is impaired.

Blood glucose is a tightly regulated process. A healthy person’s blood glucose is kept in the range from 3.3-5.5 mmol/L (60-100 mg/dl) but after they eat, their blood sugar rises as a result of the glucose that comes from the broken-down carbohydrate-based food. This triggers the hormone insulin to be released from the pancreas, which signals the muscle and adipose (fat) cells of the body to move the excess sugar out of the blood. What happens in insulin resistance is that the cells of the body ignore signals from insulin telling it to move glucose from broken down from digested food from the blood into the cells. When someone is insulin resistant, blood glucose stays higher than it should be for longer than it should be (hyperglycemia).

The Process of Moving Glucose Inside the Cell

A special transporter (called GLUT4) that can be thought of as a ‘taxi’ exists in muscle and fat cells and is controlled by insulin. This ‘taxi’ moves glucose from the blood and into the cells. GLUT4 ‘taxis’ are kept inside the cell until they’re needed. When ‘taxis’ are required, they go to the surface of the cell, bind with insulin and pick up their ‘passenger’ (glucose) and moves it inside the cell. Both the ‘taxi’ (GLUT4 receptor) and the insulin are also taken inside the cell and then replaced on the surface of the cell with new receptors. As long as there are GLUT4 ‘taxis’ available on the surface of the cell to transport glucose inside everything’s good, but when blood sugar is quite high, the pancreas keeps releasing insulin to bind with the GLUT4 ‘taxis’, but those ‘taxis’ may not appear fast enough on the cell surface to pick up the glucose. In this case, blood sugar remains higher then it should be for longer, a state called hyperglycemia. When there are insufficient receptors to move glucose into the cell, this is called insulin resistance. It may be temporary, as in the example above, or may be long-term. If it is temporary, the rise in blood sugar (hyperglycemia) is short but if the receptors don’t respond properly long-term, then blood sugar remains higher for a longer period of time, until the ones that do work can bring the glucose inside. In one case, the blood sugar may be quite high for a short time or may be moderately high for a long time. In both cases, the body is exposed to higher blood sugar than it should be, and this causes damage to the body. It isn’t known whether insulin resistance comes first or hyperinsulinemia does. It is believed that it may be different depending on the person.

What Triggers Hyperinsulinemia?

It is known that excessive carbohydrate intake can trigger hyperglycemia, as well as hyperinsulinemia. Eating lots of fruit, for example or foods that contain fructose (fruit sugar) will cause the body to move that into the body first in order to get it to the liver, before it deals with glucose. This causes glucose levels in the blood to rise, resulting in both hyperglycemia and hyperinsulinemia. Lots of processed foods contain high fructose corn syrup (HFCS) which contributes to problems with high blood sugar and hyperinsulinemia.

There are other things that can also trigger hyperglycemia and hyperinsulinemia include certain medications (like corticosteroids and anti-psychotic medication) and even stress. Stress causes the hormone cortisol to rise, which is a natural corticosteroid. It is thought that long-term stress may lead to hyperinsulinemia, which increases appetite by affecting neuropeptide Y expression. This may explain why people eat more when they’re stressed and are very often drawn to carbohydrate-based foods that are quickly broken down for energy.

Diseases Associated with Hyperinsulinemia

It is well known that hyperglycemia that occurs with Type 2 Diabetes contributes to problems with the eyes, kidneys and nerves of the extremities, especially the feet and toes. Less known are the diseases and metabolic problems that can occur due to hyperinsulinemia.

Hyperinsulinemia has a well-establish association to the development of Type 2 Diabetes and Gestational Diabetes (the Diabetes of pregnancy), but also to Metabolic Syndrome (MetS).

Metabolic Syndrome (MetS) is a cluster of symptoms that together put people at increased risk for cardiovascular disease, including heart attack and stroke.

These symptoms of MetS include having 3 or more of the following;

  1. Abdominal obesity (i.e. belly fat), specifically, a waist size of more than 40 inches (102 cm) in men and more than 35 inches (89 cm) in women
  2. Fasting blood glucose levels of 100 mg/dL (5.5 mmol/L) or above
  3. Blood pressure of 130/85 mm/Hg or above
  4. Blood triglycerides levels of 150 mg/dL (1.70 mmol/L) or higher
  5. High-density lipoprotein (HDL) cholesterol levels of 40 mg/dL (1.03 mmol/L) or less for men and 50 mg/dL (1.3 mmol/L) or less for women

Hyperinsulinemia is also an independent risk factor for obesity, osteoarthritis, certain types of cancer including breast and colon/rectum, Alzheimer’s Disease and other forms of dementia[1], erectile dysfunction[2] and polycystic ovarian syndrome (PCOS)[3].

The damage associated with hyperinsulinemia is due to the continuous action of insulin in the affected tissues[4].

Risk factors for developing insulin resistance include a family history of Type 2 Diabetes, in utero exposure to Gestational Diabetes (i.e. an unborn child whose mother had Gestational Diabetes), abdominal obesity (fat around the middle) and detection of hyperinsulinemia.  Assessors of insulin resistance using blood tests such as the Homeostatic Model Assessment (HOMA2-IR) test which estimates β-cell function and insulin resistance (IR) from simultaneous fasting blood glucose and fasting insulin or fasting blood glucose and fasting C-peptide[1]. As well, incorporation of some forms of exercise including resistance training may lower insulin resistance in the muscle cells and weight loss – even when people are not very overweight can increase uptake of glucose, due to lowered insulin resistance of the liver.

Detection of hyperinsulinemia can occur using an Oral Glucose Sensitivity Index (OGIS), which is similar to a 2-hr Oral Glucose Tolerance Test (2-hr OGTT) which is a test where a fasting person drinks a known amount of glucose and their blood sugar is measured before the test starts (baseline, while fasting) and at 2 hours. In the OGIS, both blood glucose and blood insulin levels are measured at baseline (fasting), at 120 minutes and at 180 minutes [5].

Glucose and insulin response patterns that result after people take oral glucose can also be used to determine hyperinsulinemia status. Between 1970 and 1990, Dr. Joseph R. Kraft collected data from almost 15,000 people which showed five main glucose and insulin response patterns; with one being the normal response. Kraft’s methodology was to measure both glucose and insulin response over a 5-hour period, noting the size of both the glucose and insulin peaks, as well as the rate that it took the peaks to come back down to where it started from. Kraft concluded that a 3-hour oral glucose tolerance test with both glucose and insulin measured at baseline (fasting), 30, 60 120 and 180 minutes was as accurate as a 5-hour test. Most striking about the original study and recent re-analysis of this data found that up to 75% of people with normal glucose tolerance have carrying degrees of hyperinsulinemia [9]. You can read more about that in this recent article.

Hyperinsulinemia and insulin resistance together are the essence of carbohydrate intolerance; the varying degrees to which people can tolerate carbohydrate without their blood sugar spiking. This is not unlike other food intolerance such lactose intolerance or gluten intolerance which reflect the body’s inability to handle specific types of carbohydrate in large quantities.

Some final thoughts…

Insulin resistance and hyperinsulinemia are present long before a diagnosis of pre-diabetes and are now are considered an entirely separate stage in the development of the disease (you can read more about that here). A recent study reported that abnormal blood sugar regulation precedes a diagnosis of Type 2 Diabetes by at least 20 years [6] which means that long before blood sugar becomes abnormal, the progression to Type 2 Diabetes has already begun. Knowing how to recognize the symptoms of insulin resistance and hyperinsulinemia and to have them measured or estimated, as well as to detect the abnormal spike in blood glucose that often occurs 30 to 60 minutes after eating carbohydrate-based food is essential to avoiding progression to Type 2 Diabetes as well as the complications associated with hyperglycemia and hyperinsulinemia.

If you would like my help in lowering your risk to developing Type 2 Diabetes and the chronic disease risks associated with hyperinsulinemia or in reversing their symptoms, please send me a note using the Contact Me form on the tab above. I provide both in-person consultations as well as by Distance Consultation,using Skype and phone.

To your good health!

Joy

You can follow me at:

       https://twitter.com/lchfRD

         https://www.facebook.com/BetterByDesignNutrition/

          https://plus.google.com/+JoyYKiddieMScRD

https://www.instagram.com/lchf_rd

References

  1. Crofts, C., Understanding and Diagnosing Hyperinsulinemia. 2015, AUT University: Auckland, New Zealand. p. 205.
  2. Knoblovits P, C.P., Valzacci GJR,, Erectile Dysfunction, Obesity, Insulin Resistance, and Their Relationship With Testosterone Levels in Eugonadal Patients in an Andrology Clinic Setting. Journal of Andrology, 2010. 31(3): p. 263-270.
  3. Mather KJ, K.F., Corenblum B, Hyperinsulinemia in polycystic ovary syndrome correlates with increased cardiovascular risk independent of obesity. Fertility and Sterility, 2000. 73(1): p. 150-156.
  4. Crofts CAP, Z.C., Wheldon MC, et al, Hyperinsulinemia: a unifying theory of chronic disease? Diabesity, 2015. 1(4): p. 34-43.
  5. Crofts, C., et al., Identifying hyperinsulinaemia in the absence of impaired glucose tolerance: An examination of the Kraft database. Diabetes Res Clin Pract, 2016. 118: p. 50-7.
  6. Sagesaka H, S.Y., Someya Y, et al, Type 2 Diabetes: When Does It Start? Journal of the Endocrine Society, 2018. 2(5): p. 476-484.

Copyright ©2018 BetterByDesign Nutrition Ltd.

LEGAL NOTICE: The contents of this blog, including text, images and cited statistics as well as all other material contained here (the “content”) are for information purposes only.  The content is not intended to be a substitute for professional advice, medical diagnosis and/or treatment and is not suitable for self-administration without the knowledge of your physician and regular monitoring by your physician. Do not disregard medical advice and always consult your physician with any questions you may have regarding a medical condition or before implementing anything  you have read or heard in our content.

There Are Now Two Stages BEFORE a Diagnosis of Type 2 Diabetes

This past Wednesday (November 28, 2018) the American Association of Clinical Endocrinologists (AACE) announced publication of a new Position Statement which identifies four separate disease stages associated with an abnormal glucose response including Type 2 Diabetes;

Stage 1: Insulin Resistance
Stage 2: Prediabetes
Stage 3: Type 2 Diabetes
Stage 4: Vascular Complications — including retinopathy (disease of the eyes that can result in vision loss),  nephropathy (disease of the kidneys which can lead to kidney failure) and neuropathy (disease of the nerves —especially of the toes and feet which can lead to amputations), as well as other chronic disease risks associated with Type 2 Diabetes.

For those who have read the first two articles in this series (links below), the existence of a stage before blood sugar becomes abnormal (Prediabetes) and two stages before a diagnosis of Type 2 Diabetes will sound very familiar!

In the two previous articles, I explained the findings of a recent a large-scale study that involved 7800 subjects and which found that 3 out of 4 adults have totally normal fasting blood glucose test results and normal blood glucose 2 hours after a standard glucose loadbut have very abnormal glucose spikes after eating and very abnormal levels of circulating insulin (“hyperinsulinemia“) that is associated with these dysfunctional glucose spikes.

It has been reported that hyperinsulinemia is present a decade before fasting blood glucose levels become abnormal, so it should come as no surprise that it is now recognized that there are two stages BEFORE a diagnosis of Type 2 Diabetes. Those who have read the two preceding articles will know that it is the hyperinsulinemia that leads to the insulin resistance, so in effect the first stage in this disease process really includes both of these together.

This Position Statement also recognizes;

“According to a recent analysis using data from the
U.S. National Health and Nutrition Examination Surveys
(NHANES; 1988-2014), patients with prediabetes have
increased prevalence rates of hypertension, dyslipidemia,
chronic kidney disease and cardiovascular disease (CVD)
risk.”

The Position Statement focuses on early intervention to reduce chronic disease risk which include diet and lifestyle changes as well as weight-loss. The goal of the release of the statement is to prevent the progression to Type 2 Diabetes, cardiovascular disease (CVD) and the metabolic diseases associated with it.

What is the importance of these two early stages?

What these stages mean is that long before blood sugar becomes abnormal, the progression to Type 2 Diabetes has already begun.

What it also implies is that people need to be given additional lab tests when their fasting blood sugar results are still normal in order to detect the presence of abnormal glucose spikes 30 minutes and 60 minutes after a glucose load as well tests measuring the abnormal insulin spikes associated with it as it is chronic hyperinsulinemia (high insulin levels) that leads to insulin resistance and the progression to Type 2 Diabetes as well as the associated chronic diseases.

Since 3 out 4 adults may have normal fasting blood glucose but with hyperinsulinemia, if we are going to stop the tsunami of Type 2 Diabetes, we must start treating it when fasting blood glucose is normal.

As I said in my last article, the time to think about implementing dietary changes and using updated lab testing procedures is now. We must act to  keep people from becoming carbohydrate intolerant and from developing hyperinsulinemia, Pre-diabetes, Type 2 Diabetes and the host of metabolic diseases that go along with it. This proactive approach is long overdue.

If you would like my help in lowering your risk to developing Type 2 Diabetes and the chronic disease risks associated with hyperinsulinemia or in reversing their symptoms, please send me a note using the Contact Me form on the tab above. I provide both in-person consultations as well as by Distance Consultation,using Skype and phone. Please let me know how I can help.

To your good health!

Joy

Note: If you haven’t yet read the two previous related articles, I would encourage you to have a look. The first article explains the existence of ‘silent Diabetes‘ in those with normal Fasting Blood Glucose test results and is titled When Normal Fasting Blood Glucose Results Aren’t Necessarily “Fine” and can be read here.

The second article titled Carbohydrate Intolerance & the Chronic Disease Risk of High Insulin Levels explains what hyperinsulinemia is (chronically high levels of circulating insulin) and why it’s a problem and can be read here.

You can follow me at:

 https://twitter.com/lchfRD

  https://www.facebook.com/BetterByDesignNutrition/

 https://plus.google.com/+JoyYKiddieMScRD

and now on Instagram, too:

https://www.instagram.com/lchf_rd

Reference

American Association of Clinical Endocrinologists Announces Framework for Dysglycemia-Based Chronic Disease Care Model, November 28, 2018, AACE Online Newsroom, url: https://media.aace.com/press-release/american-association-clinical-endocrinologists-announces-frameworkdysglycemia-based-c

Copyright ©2018 BetterByDesign Nutrition Ltd.

LEGAL NOTICE: The contents of this blog, including text, images and cited statistics as well as all other material contained here (the “content”) are for information purposes only.  The content is not intended to be a substitute for professional advice, medical diagnosis and/or treatment and is not suitable for self-administration without the knowledge of your physician and regular monitoring by your physician. Do not disregard medical advice and always consult your physician with any questions you may have regarding a medical condition or before implementing anything  you have read or heard in our content.

Carbohydrate Intolerance & the Chronic Disease Risk of High Insulin

In the previous article titled When Normal Fasting Blood Glucose Results Aren’t Necessarily “Fine” I explained why normal results on a fasting blood glucose (FBG) test does not necessarily mean that a person is not at risk for Type 2 Diabetes, as well as other metabolic diseases. Even when  both fasting blood glucose and 2-hour Oral Glucose Tolerance Test levels are normal, the person can still have a very abnormal blood sugar response after they eat. In addition, as mentioned in the previous article, this won’t necessarily show up on a HbA1C test (3-month blood sugar average) because blood glucose returns to normal within 2 hours.

An even bigger concern than these ‘spikes’ of high blood glucose are the chronically high levels of the hormone insulin, a condition called  hyperinsulinemia.

Hyperinsulinemia occurs because a person’s blood sugar spikes every time they eats carbohydrate-based foods due to one of the roles of insulin being to take excess sugar out of the blood and move it into the cells. Even though blood glucose returns back to normal by 2 hours after eating carbohydrate (in response to the effect of the hormone insulin) this abnormal glucose response to eating carbohydrate-based foods is what drives hyperinsulinemia and is made worse by insulin resistance, which I explain below.  I call this overall response “Carbohydrate Intolerance” because like other food intolerances such lactose intolerance or gluten intolerance, the body is clearly not able to handle large amounts of carbohydrate and remain healthy.

It is the hyperinsulinemia and not the high levels of blood sugar in and by itself that puts people at risk for the serious chronic diseases of cardiovascular disease (heart attack and stroke), high cholesterol and high blood pressure [1] that people usually associate with Type 2 Diabetes. High blood sugar does have risks of course, including loss of vision and amputation of limbs, but to use and analogy, if high blood sugar is the “tip of the iceberg” then hyperinsulinemia is the bigger part of the iceberg that can’t be seen. We can’t see it because it is rarely, if ever measured.

Most concerning is that based on the same large-scale 2016 study referred to in the previous post [1] which looked at the blood glucose response and circulating insulin responses from almost 4000 men aged 20 years and older and 3800 women aged 45 years or older during a 5 hour Oral Glucose Tolerance Test. The study found that 53% had normal glucose tolerance; that is, they had normal fasting blood sugar and did not have impaired glucose tolerance (IGT) 2 hours after the glucose load. Of these people with normal glucose tolerance, 75% had abnormal blood sugar results between 30 minutes and 1 hour.

In the previous article, I illustrated what the three abnormal glucose responses looked like compare to a normal glucose response. A normal blood glucose curve represents Carbohydrate Tolerance and for all intents and purposes, the three abnormal glucose response graphs represent the Three Stages of Carbohydrate IntoleranceEarly Carbohydrate Intolerance, Advanced Carbohydrate Intolerance and Severe Carbohydrate Intolerance.

Carbohydrate Tolerance

Normal Blood Glucose Pattern

As outlined in the previous article, the normal blood glucose curve rises to a single moderate peak and then decreases steadily until it’s back to where it started from at 2 hours.

Carbohydrate Tolerance (Normal Glucose Curve) – graph by Joy Y. Kiddie, MSc, RD (based on [1] Crofts, C., et al., Identifying hyperinsulinaemia in the absence of impaired glucose tolerance: An examination of the Kraft database. Diabetes Res Clin Pract, 2016. 118: p. 50-7.)

Carbohydrate Intolerance

Carbohydrate Intolerance occurs in three progressive stages, Early Carbohydrate Intolerance, Advanced Carbohydrate Intolerance and Severe Carbohydrate Intolerance and culminates with the diagnosis of Type 2 Diabetes (T2D). Hyperinsulinemia combined with insulin resistance form the heart of Carbohydrate Intolerance.

Insulin Resistance

In the early stages of Carbohydrate Intolerance, receptors in the liver and muscle cells begin to stop responding properly to insulin’s signal. This is called insulin resistance. Insulin resistance can be compared to someone hearing a noise such as their neighbour playing music, but after a while their brain “tunes out” the noise.  Even if the neighbour gradually turns up the volume of the music, the person’s brain compensates by further tuning out the increased noise. This is what happens with the body when it becomes insulin resistant. It no longer responds to insulin’s signal. To compensate for insulin resistance, the β-cells of the pancreas begin producing and releasing more and more insulin resulting in  hyperinsulinemia, which is too much insulin in the blood. Hyperinsulinemia  along with insulin resistance form the heart of Carbohydrate Intolerance.

The Three Stages of Carbohydrate Intolerance

In Early Carbohydrate Intolerance rather than blood glucose going up to a moderate peak and then falling gradually, blood sugar begins to remain elevated at 60 minutes before beginning to drop. Blood sugar at fasting is normal and after 2 hours  did not return to baseline, but did not meet the criteria for impaired glucose tolerance. A two-stage rise in glucose can be clearly seen.

Early Carbohydrate Intolerance – graph by Joy Y. Kiddie, MSc, RD (based on [1] Crofts, C., et al., Identifying hyperinsulinaemia in the absence of impaired glucose tolerance: An examination of the Kraft database. Diabetes Res Clin Pract, 2016. 118: p. 50-7.)
As the inability to tolerate carbohydrate progresses, the Advanced Carbohydrate Intolerance curve (below) reflects that blood sugar goes slightly higher at 60 minutes than at 30 minutes before beginning to fall, yet these people still have normal blood glucose at fasting (baseline) and do not meet the criteria for impaired glucose tolerance at 2 hours. As you will see below in the section about insulin, this is where insulin release is already very abnormal.

Advanced Carbohydrate Intolerance – graph by  Joy Y. Kiddie, MSc, RD (based on [1] Crofts, C., et al., Identifying hyperinsulinaemia in the absence of impaired glucose tolerance: An examination of the Kraft database. Diabetes Res Clin Pract, 2016. 118: p. 50-7.)
While the Severe Carbohydrate Intolerance curve (below) is shaped only a slightly differently than the Advanced Carbohydrate Intolerance curve (above) as you will also see further on in this article, the insulin response in both of these two curves is very different.

Severe Carbohydrate Intolerance – graph by Joy Y. Kiddie, MSc, RD (based on [1] Crofts, C., et al., Identifying hyperinsulinaemia in the absence of impaired glucose tolerance: An examination of the Kraft database. Diabetes Res Clin Pract, 2016. 118: p. 50-7.)

Normal Insulin Response

The β-cells of the pancreas of healthy people are constantly making insulin and storing most of it until these cells receive the signal that food containing carbohydrate has been eaten. β-cells also constantly release small amounts of insulin in very small pulses called basal insulin. This basal insulin allows the body to use blood sugar for energy even when the person hasn’t eaten for several hours or longer. The remainder of the insulin stored in the β-cells is only released when blood sugar rises after the person eats foods containing carbohydrate and this insulin is released in two phases; the first-phase insulin response occurs as soon as the person begins to eat and peaks within 30 minutes and can be seen at 30 minutes on the graph below. The amount of the first-phase insulin release is based on how much insulin the body is used to needing each time the person eats. Provided a carbohydrate tolerant person eats approximately the same amount of carbohydrate-based food at each meal day to day, the amount of insulin in the first-phase insulin response will be enough to move the excess glucose from the food into the cells, returning blood sugar to its normal range of ~100 mg/dl (5.5 mmol/L). If there is not enough insulin in the first-phase insulin response, the β-cells will release a smaller amount of insulin within an hour to an hour and a half after the person began to eat. This is the second-phase insulin response and can be seen at 60 minutes on the graph below.

Normal Glucose and Normal Insulin Curves

Below is the same normal glucose curve as above but here it is unlabeled and it is show along with the corresponding normal insulin curve (dashed line). As one can see, the two responses are more or less proportional to each other. As glucose rises in the blood, insulin is released mainly as a first-phase insulin response, which results in the blood glucose level falling in a straight line to baseline by 2 hours.

Carbohydrate Tolerance based on [1] Crofts, C., et al., Identifying hyperinsulinaemia in the absence of impaired glucose tolerance: An examination of the Kraft database. Diabetes Res Clin Pract, 2016. 118: p. 50-7.

ABnormal Insulin Responses of CARBOHYDRATE INTOLERANCE 

Early Carbohydrate Intolerance

Below is the same Early Carbohydrate Intolerance glucose curve as above and in the previous article, just unlabeled.  As one can see,  as glucose rises in the blood even more insulin is released; initially as a first-phase insulin release and then as a second-phase insulin release.  This results in blood glucose level falling but not to baseline (fasting levels) by 2 hours afterwards, but the fall is not as a straight line. There are clearly two peaks in the glucose curve, before it falls.

It is insulin resistance of the liver and muscle cells which results in the β-cells of the pancreas making more insulin and as can be seen from the graph below it takes more insulin to move the same amount of glucose (carbohydrate) into the cell.

Early Carbohydrate Intolerance – based on [1] Crofts, C., et al., Identifying hyperinsulinaemia in the absence of impaired glucose tolerance: An examination of the Kraft database. Diabetes Res Clin Pract, 2016. 118: p. 50-7.
Advanced Carbohydrate Intolerance

By the time people have progressed to Advanced Carbohydrate Intolerance, the first-phase insulin response won’t produce enough insulin be able to clear the extra blood glucose after a carbohydrate load and even the second-phase insulin response won’t be enough to overcome the insulin resistance of the cells. At this point, the β-cells of the pancreas are unable to make enough insulin to clear the excess glucose from the blood and blood glucose rises well above the normal high peak of 126 mg/dl (7.0 mmol/L).  What is also apparent is that even with all the insulin release, blood sugar levels begin rising sooner and rise to much higher levels.

With ongoing high intake of carbohydrate every few hours, especially refined and processed carbohydrate such as bread, pasta and rice which are broken down quickly to glucose, the amount of insulin that must be released from the β-cells of the pancreas to handle a steady intake of carbohydrate-based foods increases substantially.  The dashed black line on the graph below shows the insulin curve of Advanced Carbohydrate Intolerance. While the Early Carbohydrate Intolerance glucose curve doesn’t look significantly different then the Advanced Carbohydrate Intolerance curve (see above), it’s easy to see that the insulin curves are VERY different! The hyperinsulinemia (high levels of insulin) that is present in Advanced Carbohydrate Intolerance is easy to see.

Advanced Carbohydrate Intolerance  – based on [1] Crofts, C., et al., Identifying hyperinsulinaemia in the absence of impaired glucose tolerance: An examination of the Kraft database. Diabetes Res Clin Pract, 2016. 118: p. 50-7.
Most concerning is that 53% had normal glucose tolerance (i.e. normal fasting blood sugar and 2 hour postprandial blood sugar <7.8 mmol/L). Of these people with normal glucose tolerance, 75% had abnormal blood sugar results between 30 minutes and 1 hour and the chronically high levels of insulin that accompanies it put these people at significant risk of chronic diseases in addition to Type 2 Diabetes, including heart attack and stroke, hypertension (high blood pressure), elevated cholesterol and triglycerides, non-alcoholic fatty liver (NAFLD), Poly Cystic Ovarian Syndrome (PCOS), Alzheimer’s disease and other forms of dementia, as well as certain forms of cancer including breast and colon cancer [1].

Standard tests for blood glucose will NOT show the significant abnormality in Advanced Carbohydrate Intolerance in terms of how the body is able (or rather, not able) to process carbohydrate between 30 minutes and 60 minutes because standard blood tests do not test either glucose or insulin at these points!  It's not that there aren't abnormalities, it is just that they are not measured!
Severe Carbohydrate Intolerance

By the time people’s insulin and glucose curves look like the ones below, these people have no way of knowing they are at significant risk for the serious, chronic diseases listed above because their fasting blood sugar is still normal!

Severe Carbohydrate Intolerance II – based on [1] Crofts, C., et al., Identifying hyperinsulinaemia in the absence of impaired glucose tolerance: An examination of the Kraft database. Diabetes Res Clin Pract, 2016. 118: p. 50-7.

Type 2 Diabetes

Type 2 Diabetes (T2D) is the final stage of Carbohydrate Intolerance and is the natural outcome of a person continuing to eat a diet high in carbohydrate-containing foods at each of their meals and at snacks when their body is unable to tolerate it, which is made worse by insulin resistance.  Often this is the natural outcome of people following Dietary Guidelines (US or Canadian, which are quite similar) which are designed for a healthy population not people who are metabolically unwell. The problem is most people think they are healthy because they have normal blood glucose tests, and their metabolic dysfunction is never measured!

The Dietary Guidelines recommend that people eat 45-65% of their dietary intake as carbohydrate, which people in both countries do and even those who limit grain-based carbohydrate often take in considerable amounts of carbohydrate in the form of fruit, milk and yogurt, as well as starchy vegetables such as peas, corn and potatoes which puts the same strain on their β-cells as the “carbs” they are not eating as grain.

Since ~75% of people with normal glucose tolerance have abnormal blood sugar results between 30 and 60 minutes as well as the accompanying  abnormal insulin levels, these people continue to put a very high demand on their pancreas to produce and release large amounts of insulin every few hours when they eat, until it’s too late. 

Some Final Thoughts…

It has been said that Type 2 Diabetes is a “chronic, progressive disease”, but does it doesn’t have to be this way! It can be stopped LONG before fasting blood sugars become abnormal.

Diagnosing hyperinsulinemia is simple and can be done with existing standard lab tests; namely a 2 hour Oral Glucose Tolerance test with an extra glucose assessor and extra insulin assessor at 30 minutes and 60 minutes. When patients request this test because they are at high risk, too many are told that it is “a waste of healthcare dollars” when quite literally they could be spared the scourge of Type 2 Diabetes by having the changes in insulin and glucose response diagnosed in the decade before blood sugar begins to become abnormal!

It’s time to think about ways to implement dietary changes and lab testing procedures that will keep people from becoming Carbohydrate Intolerant and from developing hyperinsulinemia, Type 2 Diabetes and the host of metabolic diseases that go along with it.

In fact, it is long overdue.

If you would like my help in lowering your risk to developing Type 2 Diabetes and the chronic disease risks associated with hyperinsulinemia, or reversing their symptoms, then please send me a note using the Contact Me form, on the tab above. I provide both in-person consultations as well as by Distance Consultation using Skype and phone.

To our good health!

Joy

You can follow me at:

 https://twitter.com/lchfRD

  https://www.facebook.com/BetterByDesignNutrition/

 https://plus.google.com/+JoyYKiddieMScRD

References

  1. Crofts, C., et al., Identifying hyperinsulinaemia in the absence of impaired glucose tolerance: An examination of the Kraft database. Diabetes Res Clin Pract, 2016. 118: p. 50-7.

Copyright ©2018 BetterByDesign Nutrition Ltd.

LEGAL NOTICE: The contents of this blog, including text, images and cited statistics as well as all other material contained here (the “content”) are for information purposes only.  The content is not intended to be a substitute for professional advice, medical diagnosis and/or treatment and is not suitable for self-administration without the knowledge of your physician and regular monitoring by your physician. Do not disregard medical advice and always consult your physician with any questions you may have regarding a medical condition or before implementing anything  you have read or heard in our content.

 

When Normal Fasting Blood Glucose Isn’t Necessarily “Fine”

INTRODUCTION: When people have a fasting blood glucose test and the results come back normal they’re told (or assume) that everything’s fine. But is it? Certainly, a fasting blood glucose test is the least expensive test to find out if someone is already pre-diabetic, but for those wanting to avoid becoming Diabetic and to lower their risk of the other chronic disease associated with Type 2 Diabetes and high levels of circulating insulin (called hyperinsulinemia) noticing abnormalities in how we process carbohydrates is essential and these changes are estimated to take place a decade before our fasting blood sugar begins to become abnormal.


Our bodies have to maintain the glucose (sugar) in our blood at or below 5.5 mmol/L (100 mg/dl) but each time we eat or drink something other than water or clear tea or coffee, our blood sugar rises as our body breaks down the carbohydrate in the food from starch and complex sugars to glucose, a simple sugar.  Eating causes hormones in our gut, called incretin hormones to send a signal to our pancreas to release insulin, which moves the excess glucose out of our blood and into our cells. When everything is working properly, our blood sugar falls back down to a normal level within 2 hours after we eat.

If we’re healthy and don’t snack after supper, our blood sugar falls to a lower level overnight but that too is maintained in a tightly regulated range between 3.3 mmol/l (60 mg/dl) and 5.5 mmol/l (100 mg/dl). During the night and as we approach morning, our body will break down our stored fat for energy and convert it to glucose in a process called gluconeogenesis.

When we have a fasting blood glucose test, it measures our blood sugar after we’ve fasted overnight and when we’re healthy, the results will be between 3.3-5.5 mmol/L (60-100 mg/dl). If it is higher than 5.5 mmol/l (100 mg/dl) but less than 6.9 mmol/L (125 mg/dl) we are diagnosed with impaired fasting glucose, but what if it’s normal? Is a normal fasting blood glucose test result enough to say that we’re not at risk for Type 2 Diabetes? No, because a fasting blood glucose doesn’t tell us anything about how our body responds when we eat!

A 2 hour Oral Glucose Tolerance Test (2 hr-OGTT) may be requested for people whose fasting blood glucose is impaired (higher than 5.5 mmol/L) in order to see if it returns to normal after they consume a specific amount of glucose (sugar).

If their blood sugar returns to normal (less than 5.5 mmol/L) 2 hours after drinking a beverage containing 75 g of glucose (100 g if they’re pregnant) then the diagnoses remains impaired fasting glucose because it is only abnormal when fasting. However, if the results are greater than 7.8 mmol/L (140 mg/dl) but below 11.0 mmol/L (200 mg/dl), then they are diagnosed with impaired glucose tolerance which is called “pre-diabetes“.

If the 2 hour results are greater than 11.0 mmol/L (200 mg/dl), then a diagnosis of Type 2 Diabetes is made because their fasting blood glucose is > 7.0 mmol/L (126 mg/dl) and their 2 hour blood glucose is > 11.0 mmol/L (200 mg/dl).

But what if their fasting blood glucose is normal? Does that mean everything’s good? No, because we don’t know what happens to their blood sugar after they eat carbohydrate containing food, most notably between 30 minutes and 60 minutes.

A 2016 study looking at blood sugar response (and insulin response) from almost 4000 men aged 20 years or older and 3800 women aged 45 years or older who had a 5 hour Oral Glucose Tolerance Test using 100 g of glucose. The study found that 53% had normal glucose tolerance; that is, they had normal fasting blood sugar and did not have impaired glucose tolerance (IGT) 2 hours after the glucose load. Of these people with normal glucose tolerance, 75% had abnormal blood sugar results between 30 minutes and 1 hour.

Normal Blood Glucose Pattern

Based on the above study, a little less than 1000 people (990) out of the total with normal glucose tolerance (4030) had a normal glucose pattern after having 100 g of glucose (see graph below). See how the blood sugar rises to a moderate peak and then decreases steadily until it’s back to where it started from at 2 hours. This is what blood sugar is supposed to do.

Normal Glucose Curve (carbohydrate tolerance) – graph by Joy Y. Kiddie, MSc, RD (based on [1] Crofts, C., et al., Identifying hyperinsulinaemia in the absence of impaired glucose tolerance: An examination of the Kraft database. Diabetes Res Clin Pract, 2016. 118: p. 50-7.)

Abnormal Glucose Patterns

Almost the same number of people (961) as had normal glucose curves showed early signs of carbohydrate intolerance which can be seen most noticeably between 30 and 60 minutes. These folks had normal fasting blood glucose and but after 2 hours, blood glucose did not return to baseline, but did not meet the criteria for impaired glucose tolerance. Unless someone was looking between 30 and 60 minutes, one would not know it was not normal in between. Keep in mind, this graph represents the average blood sugar response of these individuals. Rather than blood glucose going up to a moderate peak and then falling gradually, a two-stage rise in glucose can be clearly seen between 30 minutes and 60 minutes before beginning to drop. These people had normal fasting blood sugar and while their blood sugar at 2 hours was below the cutoff for impaired glucose tolerance, it was higher than at baseline.

Early Carbohydrate Intolerance (Early Abnormal Glucose Response) – graph by Joy Y. Kiddie, MSc, RD (based on [1] Crofts, C., et al., Identifying hyperinsulinaemia in the absence of impaired glucose tolerance: An examination of the Kraft database. Diabetes Res Clin Pract, 2016. 118: p. 50-7.)
A little more than 1200 people (1208) had the follow abnormal glucose response between 30 and 60 minutes where blood sugar actually went slightly higher at 60 minutes than at 30 minutes before beginning to fall. While these people had normal fasting blood glucose their blood glucose did not fall to baseline at 2 hours but was below the cutoffs for impaired glucose tolerance.

Advanced Carbohydrate Intolerance (Advanced Abnormal Glucose Response) – graph by  Joy Y. Kiddie, MSc, RD (based on [1] Crofts, C., et al., Identifying hyperinsulinaemia in the absence of impaired glucose tolerance: An examination of the Kraft database. Diabetes Res Clin Pract, 2016. 118: p. 50-7.)
Slightly more than 800 people (807) had an abnormal glucose response curve shaped as follows, with normal fasting blood glucose and  2-hour postprandial blood glucose results that were higher than at baseline, but did not meet the criteria for impaired glucose tolerance. What was significant is that blood sugar was significantly higher at 60 minutes than at 30 minutes.

Severe Carbohydrate Intolerance (Severe Abnormal Glucose Response) – graph by Joy Y. Kiddie, MSc, RD (based on [1] Crofts, C., et al., Identifying hyperinsulinaemia in the absence of impaired glucose tolerance: An examination of the Kraft database. Diabetes Res Clin Pract, 2016. 118: p. 50-7.)

The Significance of These Curves

The results of this study shows that even if fasting blood glucose is totally normal AND 2 hour postprandial blood glucose does not meet the criteria for impaired glucose tolerance, it often does not return to baseline and  the blood sugar response between fasting and 2 hours is very abnormal. What can’t be seen from these graphs is what happens to the hormone insulin at the same time. This will be covered in a future article, but suffice to say that in the normal glucose response pattern, blood sugar response mirrors what is happening with insulin but in the abnormal blood glucose response insulin secretion is both much higher and lasts much longer. This is called hyperinsulinemia (high blood insulin) and contributes to many of the same health risks as Type 2 Diabetes, including cardiovascular risks (heart attack and stroke), abnormal cholesterol levels and hypertension (high blood pressure).  This is like having “silent Diabetes“.

A “Waste of Healthcare Dollars”

When a person’s clinical symptoms and risk factors warrant it, I’ll request a 2 hour Oral Glucose Tolerance Test with an extra assessor at 30 minutes (and sometimes at 60 minutes) to determine how their glucose response compares to the above curves. Since these people have normal fasting blood glucose test results, a request for an Oral Glucose Tolerance Test (with or without the extra glucose assessor) is often declined as a “waste of healthcare dollars”.

What About Glycated Hemoglobin (HbA1C)?

A glycated hemoglobin test (HbA1C) measures a form of hemoglobin that binds glucose (the sugar in the blood) and is used to identify the person’s three-month average glucose concentration because blood cells turnover (get replaced) on average every 3 months.

While having a glycated hemoglobin test and a fasting blood glucose test is better than only having fasting blood glucose, it will still miss a significant percentage of people who are able to control their sugars between meals and overnight but who have significant spikes after eating food, between 30 minutes and 60 minutes, but that return to normal by 2 hours. Since most physicians will not even requisition a HbA1C test if a person’s fasting blood glucose is normal, and even if they do that test can miss the glucose spoke that occurs between 30 minutes and 60 minutes after eating, this is the reason I sometimes resort to using a Glucose Response Simulation.

Glucose Response Simulation

A simple, if somewhat crude means of assessing glucose response under a load can be done at home using an ordinary glucometer (a meter for measuring blood sugar) such as would be used by people with Diabetes, and either a 100 g of dextrose (glucose) tablets (available at most pharmacies) or the equivalent. As part of the services I provide to my clients, I work with those that want to do this type of estimate so that they can understand whether they fall into the 75% of people that have normal fasting blood sugar and do not have impaired glucose tolerance at 2 hour postprandial, but do have an abnormal glucose response, as well as hyperinsulinemia. I explain how to prepare for the test, step by step instruction for conducting the test and then I graph and analyze the data then teach them what the results mean.

Basis for Individualizing Carbohydrate Intake

These results are very helpful as firstly they help people understand the reason for reducing their carbohydrate intake over an extended period of time, in order to restore insulin sensitivity and insulin secretion. These results also enable me in time to individualize their carbohydrate intake once they have reversed some of their metabolic response, based on their own blood sugar response to a specific carbohydrate load.  In time, some of these individuals may want to add some carbohydrate back into their diet in small quantities, so with this information, I can guide them to test a standard size serving of rice, pasta or potato compared to their own blood glucose response to 100 g of glucose.

Below are three curves that I’ve plotted from people that all used the same type of glucometer (Contour Next One) which was rated as the best in a 2017 survey (see earlier post) and a standard 100 g glucose load as dextrose tablets or equivalent to 100 g of glucose [2]. I provided each one with identical instructions on how to run this simulation and to collect the results and ensured they understood.

Example 1: The person below had a single glucose peak (similar to the early carbohydrate intolerance of the first abnormal curve, above) but blood glucose did not come back down to the fasting level even after 3 hours.

Early Abnormal Glucose Response – graph by Joy Y. Kiddie MSc, RD

Example 2: The person below had a single glucose peak  that reached abnormally high levels and that didn’t fall continuously downward but slowed, then dipped below baseline at 2 hours (mild reactive hypoglycemia) and that gradually came back to baseline over the following couple of hours.

Advanced Abnormal Glucose Response – graph by Joy Y. Kiddie MSc, RD

Example 3: This person had a similar initial rise as the person above, but no hypoglycemic dip however, this person’s glucose didn’t fall to baseline until almost 5 hours.

Some Final Thoughts…

An abnormal fasting blood glucose test may warrant further testing, however a normal result is frequently dismissed as being a sign that “everything’s fine”. Data from this study indicates that as many as 75% of people with normal fasting blood sugar may have abnormal glucose responses and associated hyperinsulimia and some of the same risks as someone who has already been diagnosed with Type 2 Diabetes, but they simply don’t know it.

With reliable and relatively inexpensive glucometers, as well as continuous glucose monitors (CGM) people don’t need to wonder whether they are in the minority with a normal glucose response.

Not knowing one is at risk does nothing to provide motivation to make dietary and lifestyle changes, but knowing one has an abnormal response to carbohydrate not only enables them to want to make changes, it enables them  to find out in time which carbohydrates might be able to be added back into their diet, and in what quantities.

If you have questions as to how I can help you get started in knowing your own glucose response and to lower risk factors, please send me a note using the Contact Me form located on the tab, above.

To your good health!

Joy

References

  1. Crofts, C., et al., Identifying hyperinsulinaemia in the absence of impaired glucose tolerance: An examination of the Kraft database. Diabetes Res Clin Pract, 2016. 118: p. 50-7.
  2. Lamar, ME et al, Jelly beans as an alternative to a fifty-gram glucose beverage for gestational diabetes screening, Am J Obstet Gynacol, 1999 Nov 18 (5 Pt 1): 1154-7

You can follow me at:

 https://twitter.com/lchfRD

  https://www.facebook.com/BetterByDesignNutrition/


Copyright ©2018 BetterByDesign Nutrition Ltd.

LEGAL NOTICE: The contents of this blog, including text, images and cited statistics as well as all other material contained here (the “content”) are for information purposes only.  The content is not intended to be a substitute for professional advice, medical diagnosis and/or treatment and is not suitable for self-administration without the knowledge of your physician and regular monitoring by your physician. Do not disregard medical advice and always consult your physician with any questions you may have regarding a medical condition or before implementing anything  you have read or heard in our content.

 

 

 

The Effect of Cannabis on Appetite, Blood Sugar and Insulin Levels

As of October 17th 2018, marijuana (cannabis sativa, cannabis indica) will be legal to be sold to or possessed by adults 18 years or older in Canada and to be consumed for recreational use.  Medical marijuana has been available for sometime in Canada (and in some US states) to those with authorization from their healthcare provider, but will now be widely available to the general adult population. So why am I, as a Dietitian writing about marijuana? Because food cravings, commonly referred to as the “munchies” are one of the known side-effects of cannabis and result in people eating even when they’ve just eaten.  For those who have made a decision to lose weight and keep it off, knowing how marijuana affects appetite is something that needs to be considered. As well, for those that are at risk for Type 2 Diabetes, knowing how marijuana impacts blood glucose and serum insulin levels is also important. So as a public service, this article is about the effect of marijuana and the “munchies” on blood sugar, serum insulin and weight gain.

The “Munchies”

Tetrahydrocannabinol (THC) is one of the active components in marijuana that is responsible for people feeling “high” and is also responsible for “the munchies”.  It’s been know for sometime that the THC in cannabis activates a cannabinoid receptor in the brain (called CB1R) which triggers an increased desire to eat but a 2015 study indicates that a group of neurons (nerve cells) called pro-opiomelanocortin (POMC) which normally produce feelings of satiety (no longer feeling hungry after eating) become activated and promote hunger under the influence of THC. As it turns out, cannabis “hijacks” the POMC neurons, resulting in them releasing hunger-stimulating chemicals rather than appetite-suppressing chemicals. This is why despite having just eaten a full meal and being satiated, ordering a pizza suddenly becomes a priority. It is thought that THC from the weed binds to mitochondria inside of cells (the “powerhouse of the cell” that generates energy) and this binding acts to switch the feelings of satiety to feelings of hunger. But how does marijuana use affect weight gain, blood sugar and insulin levels?

Marijuana’s Effect on Fasting Blood Glucose and Fasting Insulin, Insulin Resistance and Weight Gain

Interestingly, epidemiological studies (studies of populations) have found lower rates of obesity and Type 2 Diabetes in those that use marijuana compared to those that never used it, suggesting that cannabinoids play a role in regulating metabolic processes. A 2013 study that analyzed data from almost 4657 adult men and women who participated in the National Health and Nutrition Examination Survey (NHANES) study from 2005 to 2010 were studied; 579 were current marijuana users and 1975 were past users. Results indicated that current marijuana use was associated with 16% lower fasting insulin levels and 17% lower insulin resistance as measured by HOMA-IR  which is calculated from fasting blood glucose and fasting insulin. As for weight gain as a side-effect from the “munchies”, this study  reported significant associations between marijuana use and smaller waist circumferences.

Marijuana and Metabolic Syndrome

A 2015 study which looked at 8478 adults 20-59 years of age who also  participated in the National Health and Nutrition Examination Survey (NHANES) study from 2005 to 2010 reported that current marijuana users had lower odds of presenting with metabolic syndrome than those that never used marijuana. Current marijuana users in the 20-30 year old range were 54% less likely than those who never used marijuana to present with metabolic syndrome.

Marijuana’s Possible Role in Type 2 Diabetes Treatment?

The studies above indicate that fasting insulin levels were reduced in current cannabis users but not in former cannabis users or in those that never used it leads to the question as to whether THC may be of medical benefit to those already diagnosed with pre-diabetes or Type 2 Diabetes. Certainly further study is warranted.

Some Final Thoughts…

Certainly, those who are Diabetic and who will begin using marijuana now that it is legal should monitor their body’s blood sugar response, especially if they are also taking medications to lower blood sugar.

Perhaps you’re curious how I can help you achieve your weight-loss and other health goals such as lowering risk factors for Type 2 Diabetes by making dietary and lifestyle changes. I provide both in person services in my Coquitlam, British Columbia office as well as via Distance Consultation (Skype, telephone). You can find out details under the Services tab above or in the Shop.

If you have questions regarding getting started or would like more information, please send me a note using the Contact Me form above and I will be happy to reply as soon as I’m able to.

To your good health!

Joy

you can follow me at:

 https://twitter.com/lchfRD

  https://www.facebook.com/BetterByDesignNutrition/

Copyright ©2018 The LCHF-Dietitian BetterByDesign Nutrition Ltd.

LEGAL NOTICE: The contents of this blog, including text, images and cited statistics as well as all other material contained here (the “content”) are for information purposes only.  The content is not intended to be a substitute for professional advice, medical diagnosis and/or treatment and is not suitable for self-administration without the knowledge of your physician and regular monitoring by your physician. Do not disregard medical advice and always consult your physician with any questions you may have regarding a medical condition or before implementing anything  you have read or heard in our content.

References

Government of Canada, Cannabis Legalization and Regulation, http://www.justice.gc.ca/eng/cj-jp/cannabis/

Koch M, Varela L, Kim JG et al, Hypothalamic POMC neurons promote cannabinoid-induced feeding, Nature, Volume 519 (2015), pages 45–50

Penner EA, Buettner H, Mittleman MA, The Impact of Marijuana Use on Glucose, Insulin, and Insulin Resistance among US Adults, Amer J of Med, 126 (7) July 2013, Pages 583-589

Vidot DC, Prado D, Hlaing WM et al, Metabolic Syndrome Among Marijuana Users in the United States: An Analysis of National Health and Nutrition Examination Survey Data, Amer J of Med, 129 (2) Feb 2016, Pages 173-179

 

American Diabetes Association & European Association Classify Low Carb Diets as Medical Nutrition Therapy

The new joint American Diabetes Association (ADA) / European Association for the Study of Diabetes (EASD) position paper [1] published online ahead of print on October 4th now classifies a low carbohydrate diet as Medical Nutrition Therapy. in the treatment of Type 2 Diabetes in adults. What this means is these two organizations which are responsible for educating over 30 million Americans and 60 million Europeans diagnosed with Diabetes consider a low carbohydrate not only safe, but effective therapeutic treatment. This recognition comes on the heels of Diabetes Australia having just released in late August their own updated position paper designed to provide practical advice and information for people diagnosed with Diabetes who are considering adopting a low carbohydrate eating plan [2].

What is Medical Nutrition Therapy?

Medical Nutrition Therapy (MNT) is defined as;

“nutritional diagnostic, therapy and counseling services for the purpose of disease management, which are furnished by a Registered Dietitian or nutrition professional” [3].

The American Diabetes Association and the European Association for the Study of Diabetes preface their updated position statement by saying;

“A systematic evaluation of the literature since 2014 informed new recommendations.”

That is, upon a review of the most current research, these two organizations have updated their prior position statements and now consider a low carbohydrate diet defined as < 26%* of daily calories as carbohydrate [1] is suitable for the purpose of disease management of Type 2 Diabetes in adults.

*Note: based on an 1800-2000 calorie per day diet this amount of daily carbohydrate would be less than < 113-125 g daily. In fact, the position paper concludes that carbohydrate restriction of 26–45% is ineffective.

The new joint position statement elaborates that Medical Nutrition Therapy (MNT) is made up of an education component and a support component in order to enable patients to adopt healthy eating patterns with the purpose of “managing blood glucose and cardiovascular risk factors” and “reducing the risk for Diabetes-related complications while preserving the pleasure of eating” [1].  The paper defines the two basic dimensions of MNT as diet quality and energy restriction and outlines the benefits of a low carbohydrate diet in the section on diet quality.

page 12 of the joint position statement (courtesy of Jan Vyjidak)

Furthermore, the joint consensus paper lists  under diet quality (Table 2, page 13) which is one of the aspects of Medical Nutrition Therapy, several diets considered suitable for adults with Type 2 Diabetes, including a low carbohydrate diet.

Table 2 —Glucose-lowering medications and therapies available in the U.S. or Europe

This move has far-reaching significance!

Publication of this paper indicates that the current scientific literature supports that a low carbohydrate is not only safe for use in adults, but is also effective in lowering metabolic markers of Type 2 Diabetes, as well as  delaying or eliminating the need for blood-glucose lowering medications for up to 4 years [1].

It moves a low carbohydrate diet from the realm of a popular lifestyle approach to Medical Nutrition Therapy.

Most importantly, this consensus paper means that qualified healthcare professionals throughout the USA and Europe can now recommend a low carbohydrate diet to their adult patients in order to enable them to manage their Type 2 Diabetes. This is a huge step forward from only being able to provide such a diet based on person’s individual preference to follow a low carbohydrate lifestyle.

Some final thoughts…

The American Diabetes Association, European Association for the Study of Diabetes and Diabetes Australia have collectively led the way for international Diabetes Associations the world over to re-evaluate their own treatment and dietary recommendations in light of the most current scientific evidence and update their position statements regarding the safe and effective use of low carbohydrate diets in the management of Type 2 Diabetes in adults.


Perhaps you have wanted to follow a low carbohydrate lifestyle and have questions about how such a diet could help you manage some of your clinical conditions or lose weight. Please send me a note using the Contact Me form above and I will reply as soon as I am able.

Whether you live locally or away, I provide services in-person in my Coquitlam (British Columbia) office, as well as via Distance Consultation (Skype or phone).  You can find more information under the Services tab and in the Shop including the Intake and Service Option form to send in to get started.

To your good health!

Joy

you can follow me at:

 https://twitter.com/lchfRD

  https://www.facebook.com/BetterByDesignNutrition/

Copyright ©2018 BetterByDesign Nutrition Ltd.

LEGAL NOTICE: The contents of this blog, including text, images and cited statistics as well as all other material contained here (the “content”) are for information purposes only.  The content is not intended to be a substitute for professional advice, medical diagnosis and/or treatment and is not suitable for self-administration without the knowledge of your physician and regular monitoring by your physician. Do not disregard medical advice and always consult your physician with any questions you may have regarding a medical condition or before implementing anything  you have read or heard in our content.

References

  1. Davies M.J., D’Alessio D.A., Fradkin J., et al, Management of Hyperglycemia
    in Type 2 Diabetes, 2018. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD), Diabetes Care, October 2018,  https://doi.org/10.2337/dci18-0033. Click here for pdf of the full article (on affiliate web page).
  2. Diabetes Australia, Low Carbohydrate Eating for People with Diabetes – Position Statement, August 2018,  https://www.diabetesqld.org.au/media-centre/2018/august/low-carb-position-statement.aspx and https://www.diabetesqld.org.au/media/583017/da-low-carb-statement-21-august-2018.pdf
  3. U.S. Department of Health and Human ServicesFinal MNT regulationsCMS-1169-FCFederal Register1 November 200142 CFR Parts 405, 410, 411, 414, and 415

 

 

American Diabetes Association & European Association Approve Low Carb Diets

The American Diabetes Association (ADA) & the European Association for the Study of Diabetes (EASD) have just released their new joint position statement which includes approval of low carbohydrate diets for use in the management of Type 2 Diabetes (T2D) in adults. This comes on the heels of Diabetes Australia having recently released an updated position statement in August titled Low Carbohydrate Eating for People with Diabetes (you can read more about that here).

This is huge!

By releasing this updated joint position statement, the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD) indicate that they now recognize a low carbohydrate diet as safe and effective lifestyle management of T2D in adults.

In the newly released joint position statement that was published online ahead of print on October 4, 2018 in the journal Diabetes Care, it was stated that the new recommendations were based on “a systematic evaluation of the literature since 2014” [1]. That is, approval for the use of low carbohydrate diets is based on current research.

A Full Range of Therapeutic Options

The new joint ADA & EASD position statement endorses “a full range of therapeutic options” including lifestyle management, medication and obesity management and indicate that:

“An individual program of Medical Nutrition Therapy (MNT) should be offered to all patients”.

The new joint position statement elaborates that Medical Nutrition Therapy (MNT) is made up of an education component and a support component to enable patients to adopt health eating patterns with the goal of “managing blood glucose and cardiovascular risk factors”. The goal is to reduce risk for Diabetes-related complications while preserving the pleasure of eating” with the two basic dimensions of MNT including diet quality and energy restriction.

Diet Quality and Eating Patterns

The joint American and European position paper on the management of T2D states clearly;

“There is no single ratio of carbohydrate, proteins and fat intake that is optimal for every person with Type 2 Diabetes.”

but

“Instead, there are many good options and professional guidelines usually recommend individually selected eating patterns that emphasize foods of demonstrated health benefit, that minimize foods of demonstrated
harm and that accommodate patient preference and metabolic needs, with the goal of identifying healthy dietary habits that are feasible and sustainable.”

Included in this category are;

  • the Mediterranean Diet
  • the Dietary Approaches to Stop Hypertension (DASH) Diet
  • Low Carbohydrate Diets
  • Vegetarian Diets

The joint position paper noted that;

“Low-carbohydrate diets (<26% of total energy) produce substantial reductions in HbA1c at 3 months and 6 months with diminishing effects at 12 and 24 months.”

Unfortunately the paper failed to note that the one-year Virta study data that reported that HbA1C continued to decline at one year but yes, a diminished rates.

The new joint ADA and European Association for the study of Diabetes also noted that moderate carbohydrate restriction was of no benefit;

“no benefit of moderate carbohydrate restriction (26–45%) was observed.”

The paper acknowledged that there are many different types of “low carbohydrate diets’ and the particular benefits of a low – carbohydrate Mediterranean eating pattern was in reducing the requirement for medication over 4 years;

“people with new-onset Diabetes assigned to a low carbohydrate  Mediterranean eating pattern
were 37% less likely to require glucose-lowering medications over 4 years compared with patients assigned to a low-fat diet”.

The paper outlines that the primary physiological actions depend on which diet is followed.

It lists advantages of using diet, including a low carbohydrate diet in the management of T2D symptoms in adults is that dietary changes are inexpensive and have no side effects

Disadvantages of using diet, including a low carbohydrate diet in the management of T2D symptoms in adults is that it requires instruction, motivation, lifelong behaviour change and may pose some social barriers.

Yes, a well-designed low carbohydrate diet does require instruction, but for those that have the motivation to avoid the chronic health complications of Diabetes through diet and who are committed to maintaining the behaviour change, I can help!

Perhaps you’re curious about the types of services that I provide both in person in my Coquitlam, British Columbia office and via Distance Consultation (Skype, telephone)? You can find out more under the Services tab or in the Shop.

If you have questions regarding getting started or would like more information, please send me a note using the Contact Me form above and I will be happy to reply as soon as I’m able to.

To your good health!

Joy

P.S. Read here why the ADA and EASD classifying a low carb diet as Medical Nutrition Therapy is so significant!

you can follow me at:

 https://twitter.com/lchfRD

  https://www.facebook.com/BetterByDesignNutrition/

Copyright ©2018 BetterByDesign Nutrition Ltd.

LEGAL NOTICE: The contents of this blog, including text, images and cited statistics as well as all other material contained here (the “content”) are for information purposes only.  The content is not intended to be a substitute for professional advice, medical diagnosis and/or treatment and is not suitable for self-administration without the knowledge of your physician and regular monitoring by your physician. Do not disregard medical advice and always consult your physician with any questions you may have regarding a medical condition or before implementing anything  you have read or heard in our content.

References

  1. Davies M.J., D’Alessio D.A., Fradkin J., et al, Management of Hyperglycemia
    in Type 2 Diabetes, 2018. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD), Diabetes Care, October 2018,  https://doi.org/10.2337/dci18-0033. Click here for pdf of the full article (on an affiliate web page).
  2. Diabetes Australia, Low Carbohydrate Eating for People with Diabetes – Position Statement, August 2018,  https://www.diabetesqld.org.au/media-centre/2018/august/low-carb-position-statement.aspx and https://www.diabetesqld.org.au/media/583017/da-low-carb-statement-21-august-2018.pdf
  3. Hallberg, S.J., McKenzie, A.L., Williams, P.T. et al. Diabetes Ther (2018). Effectiveness and Safety of a Novel Care Model for the Management of Type 2 Diabetes at 1 Year: An Open-Label, Non-Randomized, Controlled Study.  https://doi.org/10.1007/s13300-018-0373-9

Silver Bullet for Addressing Carb Cravings

I was asked an interesting question recently which was “have you found the silver bullet for reducing carb cravings“? This was an interesting way to phrase something I have been asked in many different ways the last few years.

Some people have been told that it really doesn’t matter what or how much they eat as long as they only eat “real” food. Others have heard that they need to eat plenty of fat each day, and that this will keep them full and reduce cravings for carb-based foods. Some have read that what they need to do is eat mostly protein with some fat or only eat during a very small ‘eating window’.

So what is the answer?

There really isn’t a ‘silver bullet’ as much as there is the need for a well-designed low carbohydrate diet that is specific to each person’s physiological needs.

Every person has different nutrient needs based on their age, stage of life, gender and activity level. As well, each individual has different degrees of insulin resistance and hyperinsulinemia and each person’s blood sugar responds differently to a carbohydrate load (called glycemic response). Much of these depends on their specific family history, their medical history and the type of foods they normally eat. [You can read more about all three of these here.]

There isn’t a “once-size-fits-all low carb diet”.  Based on all of the above factors, some people will do better with a higher ratio of protein to fat, whereas others need plenty of natural, healthy fats and average amount of protein. The amount and type of carbohydrate each person can tolerate will also be different. Since everyone’s needs are different, in designing a Meal Plan for someone, I start by conducting a complete nutritional assessment (personal medical history, family medical history, review of recent lab tests, dietary and lifestyle review, etc.) so that the Meal Plan that I design is tailored to their individual needs.

If there was a ‘silver bullet’ to eliminate carb cravings it would be to understand what causes them. Carb cravings are driven by several different hormones that the body produces in response to the way each person eats, as well as how much and how well they sleep, how they manage stress (or don’t), as well as any conditions or diseases that they have and any medications that they take.  All of these affect the various hormones that impact cravings for carbohydrate-based food. When I design people’s Meal Plans, I take all of these into account.

A well-designed low carbohydrate diet designed specifically for each person and taking into account the various factors that are driving their specific carbohydrate cravings is the most effective means to addressing them.

A person’s Meal Plan is not carved in stone. If a person has a fair amount of weight to lose, their Meal Plan will change once they’ve lost a significant amount of weight or if they’ve hit a plateau where they haven’t lost either weight or inches in a while.  Achieving optimal body weight is a dynamic process not a static one — as people’s needs change, so should their diet.  It’s not that a person’s Meal Plan needs to be re-designed, as much as ‘tweaked’ or ‘adjusted’ to keep them moving towards achieving their goals. This is where follow-up can be helpful.

If you have questions as to how I can help you achieve your health and nutrition goals — either by taking service in-person in my office or via Distance Consultation please send me a note using the Contact Me form above and I will be happy to reply as soon as I am able.

To your good health!

Joy

you can follow me at:

 https://twitter.com/lchfRD

  https://www.facebook.com/BetterByDesignNutrition/

Copyright ©2018 BetterByDesign Nutrition Ltd.

LEGAL NOTICE: The contents of this blog, including text, images and cited statistics as well as all other material contained here (the “content”) are for information purposes only.  The content is not intended to be a substitute for professional advice, medical diagnosis and/or treatment and is not suitable for self-administration without the knowledge of your physician and regular monitoring by your physician. Do not disregard medical advice and always consult your physician with any questions you may have regarding a medical condition or before implementing anything  you have read or heard in our content.

 

A Trial of the Evidence

In a landmark decision yesterday the Australian Health Practitioner’s Regulation Agency (AHPRA) dropped all charges of wrong-doing against orthopedic surgeon Dr. Gary Fettke for recommending a low carb high fat lifestyle to his patients. This is great news for a physician who had tired of amputating the gangrenous limbs of patients with uncontrolled Diabetes when lifestyle changes could not only spare their limbs, but their lives. It was not only Dr. Fettke that was investigated, but the strength of the scientific evidence behind his recommendation of a low carbohydrate diet was on trial. That is the subject of this article.

It is great news that AHPRA ruled that Dr. Fettke had caused no patient harm by his recommendation of a low carb high fat (LCHF) diet:

“…no significant risks to public safety have been identified that require a regulatory response under the National Law. In the case of each of the three issues considered, there is no evidence of any actual harm and nor does the Board discern any particular risk to public health and safety moving forward. For these reasons, the Board has decided to take no further regulatory action.”

— AHPRA medical board

It is outstanding that AHPRA apologized in writing to Dr. Fettke for the 4½ years of distress caused to him by the investigative process;

“I would like to take this opportunity to apologize for the errors that were made when dealing with this notification. We recognize that these errors are likely to have compounded any distress that you experienced as a result of being the subject of this investigation. We appreciate your cooperation and engagement through the complaint management process, and the reconsideration of the previous decision.”

— AHPRA medical board

This is fantastic news and must come as a tremendous relief both to Dr. Fettke and to his family who have endured untold stress from this long ordeal.

Dr. Fettke’s exoneration comes on the heels of the results of not one, but two trials over a 4-year period against South African Professor Tim Noakes for his response to a tweet on Twitter social media from a breastfeeding mother in February 2014 where he recommended that good first foods for infant weaning are low carbohydrate high fat foods. As noted by Dr. Sarah Hallberg in a letter to the Health Professions Council of South Africa (HPCSA), low carbohydrate foods such as meat, chicken, fish and leafy green vegetables align closely with South Africa’s pediatric guidelines which advise that;

“From 6 months of age give your baby meat, chicken, fish, or egg every day as often as possible. Give your baby dark green leafy vegetables and orange coloured vegetables and fruit every day.”

—Food-based Dietary Guidelines for South Africa

In April 2017 and again in the appeal  which concluded in June of this year, Noakes was cleared of all charges of professional misconduct by the HPCSA which confirmed that his advice to the breastfeeding woman in his tweet was neither “unconventional” nor “dangerous medical advice“.

In June, Noakes’ lawyer Adam Pike said in a statement that the HPSCA’s ruling;

“preserves the right of scientists and doctors to express scientific opinions and disseminate medical information”

— Adam Pike, Professor Tim Noakes’ lawyer

Phrased another way, Noakes acted as a scientist who tweeted scientifically based information.

While it was Dr. Gary Fettke and Professor Tim Noakes that have been investigated as individuals, what was largely on trial was the scientific evidence behind their recommendation of a low carbohydrate diet. This evidence indicates that low carbohydrate diets are both safe and effective for treating obesity and for managing the symptoms of Type 2 Diabetes.

In an article I wrote in January 2018 titled A Preponderance of the Evidence, (and posted on my website dedicated to a low carb dietary approach) I documented that not only is a low carbohydrate diet for the treatment of Diabetes not new, but almost a year ago there were already many research  studies and meta-analyses published in 76 publications which spanned 18 years which involved 6,786 subjects which used a low-carb intervention — which included 32 studies of 6 months or longer and 6 studies of 2 years or longer all of which indicated that a low carbohydrate diet is safe. Not only has it been amply documented that a low carbohydrate diet is safe, but a low carbohydrate diet performed as well, if not better than competing diets in all of the above studies. Dr. Sarah Hallberg who compiled the above list is Medical Director at Indiana University Health Arnett and Virta Health Medical Director. She she pointed out in a letter to the Health Professions Council of South Africa that data available from the US government and reported in a 2015 study indicates that in 1965 (which is just prior to the beginning of the current obesity and Diabetes epidemic) Americans ate 39% of their calories as carbohydrate and 41% of their calories as fat which is considered by many nutrition researchers today to fall within the realm of a “low carbohydrate high fat diet”. Dr. Hallberg is correct. Dietary Guidelines in both the US and Canada currently recommend that the diet be 45-65% of calories as carbohydrates and that up until 2015, the US recommended a upper limit of 35% calories as fat (<30% of calories as fat in Canada). Both countries currently still recommend limiting saturated fat to <10% of calories.

Nutrition researchers today generally consider diets less than 45% of calories as carbohydrate and >35% of calories as fat to be "low carbohydrate high fat diets", so the average American diet that was 39% carbohydrate and 41% fat in 1965 would be considered "low carb high fat" by most nutrition research studies today. 

Given the much lower rates of overweight, obesity and Type 2 Diabetes in 1965 — at a time when the average American ate what is now considered a “low carb high fat diet”, should not such a macro distribution be granted “generally recognized as safe” (GRAS) standing?

For the last 40 years, the Dietary Guidelines in both the US and Canada have been counselled people to limit fat, especially saturated fat and to eat 45-65% of their calories as carbohydrate yet even a cursory look at the rates of overweight and obesity in both countries and the steadily increasing rates of Type 2 Diabetes indicates that something is terribly wrong. Clinicians (Physicians, Dietitians, Pharmacists) educated since 1977 which is the vast amount practicing in both countries (and in South Africa and Australia apparently, where Dr. Fettke and Professor Noakes are from) have all been educated within a “low fat paradigm”— where fat is vilified as the cause of cardiovascular disease and increasing carbohydrate intake is promoted as the ‘solution’ to reducing fat intake. Unless clinicians educated in this time period stayed current with the literature they simply keep teaching what they were taught; eat less fat, eat more carbs.

In the past number of years there are increasing numbers of clinicians around the world that have considered the evidence; both epidemiological and clinical studies that indicate that a low carbohydrate high fat diet not only has no adverse impact on individual health but is safe and effective for reducing overweight and obesity, as well as reducing (and in some cases reversing) the symptoms of Type 2 Diabetes. Two such clinicians are Australian orthopedic surgeon Dr. Gary Fettke and South African Professor Tim Noakes; both of whom were investigated for having recommended a low carb high fat diet which was viewed as “dangerous” and both of whom, when the scientific evidence was considered, were exonerated. To their credit both Dr. Fettke and Professor Noakes conducted themselves with integrity and transparency through the entire process and all charges of wrong-doing against them were dropped, but let’s not lose sight that it was also because of the amount and strength of the scientific evidence which indicates that a well-designed low carbohydrate high fat diet is both safe and effective for weight loss, as well as for reducing symptoms of Type 2 Diabetes.

Both men have no doubt been through a very distressing and incredibly stressful >4-year ordeal which forever changed them and their families that went through it with them, however this story is not only about them but what they believed about the safety and efficacy of a low carb diet. It was low carb high fat diets that were investigated and put on trial and the conclusion in both cases as that such a diet is neither unconventional nor dangerous.

Yes, there are other dietary options for weight-loss and targeting the reduction of symptoms of Type 2 Diabetes and diets such as the classic Mediterranean Diet or a very low-fat calorie-restricted plant-based diet are effective for those that maintain them long term. The issue is that a well-designed low carbohydrate diet is at least as effective as these and may be easier for some to stick with long term, making them more effective for those individuals. Since the scientific evidence indicates that all three of these diets are safe and to varying degrees effective for weight loss and glycemic control, it is time for clinical guidelines in both the US and Canada to be formulated to enable clinicians in both countries to offer their patients a well-designed low carbohydrate diet as an option.

Perhaps you have questions about whether a low-carbohydrate diet would be appropriate for you or wonder how medical conditions you have or medications you take may factor in? I provide both in-person services in my Coquitlam (British Columbia) office, as well as via Distance Consultation using Skype or phone and I would be happy to answer your questions and help you reach your goals. Please send me a note using the “Contact Me” form on the tab above and will reply as soon as possible.

To your good health,

Joy

 https://twitter.com/lchfRD

  https://www.facebook.com/BBDNutrition/

Copyright ©2018 BetterByDesign Nutrition Ltd.

LEGAL NOTICE: The contents of this blog, including text, images and cited statistics as well as all other material contained here (the “content”) are for information purposes only.  The content is not intended to be a substitute for professional advice, medical diagnosis and/or treatment and is not suitable for self-administration without the knowledge of your physician and regular monitoring by your physician. Do not disregard medical advice and always consult your physician with any questions you may have regarding a medical condition or before implementing anything  you have read or heard in our content.

References

  1. Fettke Free at Last, Foodmed.net, Sept 28 2018 (http://foodmed.net/2018/06/noakes-free-hpcsa-licks-wounds-lchf/)
  2. Noakes: Top Doctors Globally call on HPCSA to Stop Prosecuting Him, Foodnet.net, February 14, 2018
  3. Food-based Dietary Guidelines for South Africa, S Afr J Clin Nutr 2013;26(3)(Supplement):S1-S164
  4. Noakes Free at Last, Foodmed.net, June 10 2018 (http://foodmed.net/2018/06/noakes-free-hpcsa-licks-wounds-lchf/)
  5. Cohen E, Cragg M, deFonseka J et al, Statistical review of US macronutrient consumption data, 1965–2011: Americans have been following dietary guidelines, coincident with the rise in obesity, Nutrition (2015), Vol 31 (5), Pg 727-732.

Low Carbohydrate and Ketogenic Diets – more information

There are many popular articles available on the internet, but if you are looking for researched, credible articles about a therapeutic use of Low Carbohydrate or Ketogenic Diets as well as articles with practical applications then this article is for you.

I have written 100+ “Science Made Simple” articles related specifically to this topic — most of which are posted on an affiliate website. For the most part these are articles that folks without a science background can easily understand and apply, and they are arranged by topic so that they are easy to find.

Current list of topics includes:

-Low Carb High Fat (LCHF) Diets

-Ketogenic (Keto) Diets

-Therapeutic Low Carb Diets

-Low Calorie / Low Fat Diets

-Diet & Food Choices

-Myths about Low Carb / Keto Diets

-Low Carb / Keto Diets & Medications

-Dietary Fat

-Carbs & Carbs with Fat

-PUFA / Industrial Seed Oils

-Effects of Food Processing on Insulin and Blood Sugar

-Insulin Resistance

-Type 2 Diabetes

-Cardiovascular Disease (CVD)

-Older Adults & Diet

-Concerns and “Warnings”

-Clinical

-Setting Health and Nutrition Goals

-Anthropometrics (Body Measurements)

-Practical Applications

-Media

-Background & History

These articles can be accessed by clicking here. You will be redirected to an affiliate website that focuses only on the therapeutic use of low carb and ketogenic diets.

Perhaps you have questions about how I can support you in following a lower-carbohydrate diet? Please feel free to send me a note using the Contact Me form located on the tab above and I will reply shortly.

I provide services both remotely via Distance Consultation (Skype, long distance phone) and in-person in my Coquitlam (British Columbia) office so whether you live near or far, I can help if this is something you are interested in.

To your good health.

Joy

You can follow me on social media at:

 https://twitter.com/lchfRD

  https://www.facebook.com/BetterByDesignNutrition/

Copyright ©2018 BetterByDesign Nutrition Ltd.

LEGAL NOTICE: The contents of this blog, including text, images and cited statistics as well as all other material contained here (the “content”) are for information purposes only.  The content is not intended to be a substitute for professional advice, medical diagnosis and/or treatment and is not suitable for self-administration without the knowledge of your physician and regular monitoring by your physician. Do not disregard medical advice and always consult your physician with any questions you may have regarding a medical condition or before implementing anything  you have read or heard in our content.

Are Low Carbohydrate Diets Linked to Risk of Premature Death?

For a second week in a row dire warnings about the alleged dangers of “low carbohydrate diets” scream out from headlines across the internet.

“Low-Carb Diets Linked to Higher Risk of Premature Death”

~Newsweek August 28, 2018, 12:51 PM

“Low carbohydrate diets are unsafe and should be avoided, study suggests”

~ScienceDaily, August 28, 2018

The general public relies on journalists to thoroughly research their stories before publishing them however in the above two examples and the other incidences of reporting this story it was not indicated that (1) there was no published study (2) the story was based on researcher’s conclusions in provided materials based on an Abstract from a Poster presentation and (3) the provided materialsAbstract didn’t define the term “low carbohydrate” (# of grams of carbohydrate per day) which is central to the claims of the researchers.

The supposed link to “premature death” of a “low carbohydrate diet” were said to be part of a large study that was presented at the European Society of Cardiology (ESC) Congress 2018 in Munich, Germany, but when I went to find the journal in which the study was published so I could read it, I discovered that it’s not even been published yet.  I even checked the lead author’s Publication page on ResearchGate and could not find the published study. Furthermore, the findings were not presented as one of the more than 500 Conference sessions of research studies at the European Society of Cardiology Congress, but was one of the 4,500 Abstract presentations — not even as a talk, but as a Poster Session.

A “Poster Session” at  an academic Conference is where 100s of researchers assemble in a large hall and stand in front of a poster summarizing their research. People walk by, look at the poster and if they wish, ask questions.

Journalists wrote stories based on “materials provided to them by the European Society of Cardiology” (see story source at bottom of ScienceDaily article) which is based on the Abstract available on the website of the European Society of Cardiology’s 2018 Congress from the yet-to-be-published study by M. Mazidi  (Gothenburg, Sweden), N Katsiki (Thessaloniki, Greece), DP Mikhailidis (London, Great Britain) and M Banach (Lodz, Poland) and also published the same day (August 28, 2018) in the European Heart Journal, Volume 39 Supplemental on pages 1112-1113.

The Abstract (viewable below) is downloadable from the journal’s website and the 2018 Congress website and clearly indicates that it was a “Poster Session”.

A glaring omission from the Abstract is that it is not stated anywhere how many grams of carbohydrate per day is defined as a “low carbohydrate diet”.

The Abstract and supplied press materials claim that there is a relationship between “low carbohydrate diets” (not defined!) and death from all-causes, as well as specific death from coronary heart disease, cerebrovascular disease (stroke) and cancer and that the data analyzed was based on a representative sample of 24,825 participants of the US National Health and Nutrition Examination Survey (NHANES) from 1999 to 2010.

The researchers conclude that compared to participants with the highest carbohydrate consumption (also not defined!), those with the lowest carbohydrate intake had a 32% higher risk of all-cause death during the ~6.4-year follow-up. As well, the risk of death from coronary heart disease from “low carbohydrate”diets was 51% higher, from cerebrovascular disease (stroke) was 50% higher and from cancer was 35% higher. They furthermore state that their results were confirmed by a pooled meta-analysis of 7 prospective cohort studies with 447,506 participants and which had an average follow-up of 15.6 years which indicated that risk of death from all causes resulting from “low carbohydrate diets” was 15% higher, from cardiovascular disease was 13% higher and from cancer was 8% higher compared to high carbohydrate diets.

Wait a minute…

The researchers found risk of death from coronary heart disease and cardiovascular disease (heart attack and stroke) as ~50% higher and the pooled data of the studies they compared it to found a 13% higher incidence. Even without defining what a “low carbohydrate diet” is, a 50% increased chance of death is not comparable to a 13% increased chance of death.  Similarly, the researchers found risk of death from cancer from a “low carbohydrate diet” was 35% greater and said their findings were comparable to an 8% higher incidence in the pooled data.

The researchers (1) did not define how many grams of carbohydrate per day was considered a “low carbohydrate diet” and (2) said their data was confirmed by studies that reported very different results.

Yet, they conclude;

Our study highlighted the unfavorable effect of low carbohydrate diets (LCDs) on total- and cause- specific mortality, based on both individual data and by pooling previous cohort studies. Given the fact that LCDs may be unsafe, it would be preferable not to currently recommend these diets. Further studies to clarify the mechanisms involved in these associations and to support our findings are eagerly awaited.

Which “low carbohydrate diet” did they study? How many grams of carbohydrate per day? We don’t know because the Abstract doesn’t say and the study hasn’t yet been published.

Some Final Thoughts…

It is not responsible journalism for the media to scream headlines warning of higher risk of premature death from “low carbohydrate diets” based on supplied press materials and an Abstract of a Poster Session of an unpublished study that doesn’t even define “low carb”.

There are many studies and meta-analyses using a low-carbohydrate or ketogenic dietary intervention that span 18 years and that are outlined in detail in 76 publications involving  6,786  subjects and that include 32 studies of 6 months or longer and 6 studies of 2 years or longer that demonstrate that low carb diets of a specified number of grams of carbohydrate per day are both safe and effective. You can read more about that here.

Perhaps you have questions such as is a low-carbohydrate diet appropriate for you given your health goals, medical conditions or medications you are taking? Please feel free to send me a note using the “Contact Me” form and I will reply as soon as possible.

I provide both in-person services in my Coquitlam (British Columbia) office as well as Distance Consultation services (via Skype / long distance phone) and I’d be happy to help you achieve your health and nutrition goals.

To our good health,

Joy

You may also want to read:
Do Low Carb Diets Shorten Lifespan – a closer look (August 23 2018)
Is Coconut Oil Pure Poison (August 24 2018)

You can follow me on Twitter and Facebook:

 https://twitter.com/lchfRD

  https://www.facebook.com/BetterByDesignNutrition/

Copyright ©2018 BetterByDesign Nutrition Ltd.

LEGAL NOTICE: The contents of this blog, including text, images and cited statistics as well as all other material contained here (the “content”) are for information purposes only.  The content is not intended to be a substitute for professional advice, medical diagnosis and/or treatment and is not suitable for self-administration without the knowledge of your physician and regular monitoring by your physician. Do not disregard medical advice and always consult your physician with any questions you may have regarding a medical condition or before implementing anything  you have read or heard in our content.

Low carbohydrate diets and all cause and cause-specific mortality – page 1

 

Low Carb diets and all cause mortality – European Society of Cardiology_Page_2

Reference

Mazidi M, Katsiki N, Mikhailidis DP et al, Abstract (P5409): Low carbohydrate diets and all-cause and cause-specific mortality: a population based cohort study and pooling prospective studies, European Heart Journal, Volume 39 (Supplemental), pages 1112-1113.

 

An Accurate New Estimator of Whole Body Fat Percentage

While DEXA scans (Dual Energy X-ray Absorptiometry) are intended to measure bone mineral density, they also provide an accurate estimate of body fat percentage but not everyone wants to- or is able to go for  this kind of testing to determine how much body fat they have. While most gyms and many pharmacies often have handheld impedance body fat analyzers, these can be affected greatly by changes in body water status, as can high tech digital bathroom scales that have body fat analyzers built in.

Determining Body Fat Percentage based on BMI

Body Mass Index (BMI), which is body mass divided by the square of body height is often used to determine whether someone is normal weight, overweight or obese despite the fact that it is limited in its ability to estimate body fat percentage due to misclassification of body fat-defined obesity. For example, a BMI ≥30 which indicates obesity overlooks nearly 50% of women who have a body fat percentage > 35% which the cutoff for obesity. The US Third National Health and Nutrition Examination Survey estimated the diagnostic accuracy of BMI for body fat-defined obesity at 94% for women and 82% for men [1].

The body fat percentage chart below from the American Council on Exercise (ACE) is a commonly used by trainers and gyms to determine body fat percentage but is limited since it is based on BMI.

ACE body fat percentage chart

Determining Body Fat Percentage Based on Anthropometrics

There are a number of equations based on body measurements (anthropometrics) that have been proposed as alternatives to BMI to better estimate whole body fat percentage. Some require more than 10 different measurements, others require up to 4 different skin-fold measurements using calipers and even others are complex equations using multiple measurements. The common problem amongst all of the existing equations is a lack of simplicity, limiting their use in routine Dietetic or medical practice.

Determining Body Fat Percentage Using Relative Fat Mass (RFM)

A recently published study systematically explored more than 350 anthropometric measurements with the aim of identifying a simple linear equation that is more accurate than BMI at estimating whole body fat percentage in both men and women.

The equation is amazingly simple;

Relative Fat Mass (RFM): 64−(20×(height/waist))+(12×sex),where sex = 0 for men and 1 for women.

Click here for an article on how to accurately measure your waist circumference for use in this equation.

Compared with BMI, the Relative Fat Mass (RFM) equation was more accurate for body fat-defined obesity among both men and women over 20 years old and RFM was more accurate than BMI for those with a high body fat percentage and this accuracy held for those that were Mexican-Americans, European Americans and Africans-Americans.

Let’s look at a few examples using the Relative Fat Mass (RFM) equation with men and women, in both metric and American measurements;

Relative Fat Mass (RFM):  64−(20×(height/waist))+(12×sex)
where sex = 0 for men and 1 for women.

EXAMPLE 1: Male, aged 41, Ht: 181.61 cm, WC: 114.3
RFM: 64-(20 x (181.61/114.3)+(12 x 0)= 32.2

EXAMPLE 2: Female, aged 60, Ht:5’3″, WC: 33″
RFM: 64-(20 x (63/34))+(12 x 1) = 38.9

EXAMPLE 3: Female, aged 50, Ht:5’4″, WC: 30″
RFM: 64-(20 x (64/30))+(12 x 1) = 33.4

How to Interpret Relative Fat Mass Results

Based on the research of Gallagher et al and data from the World Health Organization, health body fat ranges have been determined as follows;

Body Fat Ranges for Standard Adults

In the case of Example 1, the 41 year old male with an RFM of 32.2 would be considered at the low end of “obese”.

The 60 year old female of Example 2 with an RFM of 38.9 would be classified at the low end of “overfat”.

The 50 year old female of Example 3 with an RFM of 33.4 would be classified at the higher end of the “healthy” range.

Some Final Thoughts…

Obesity is an significant risk factor for multiple chronic diseases and conditions including Diabetes, coronary artery disease, hypertension (high blood pressure) and certain types of cancer [1].

This new and very simple equation accurately estimates whole body fat percentage enable individuals to easily calculate whether they are have increased weight to lose and will enable clinicians to help their patients achieve optimal weight and waist circumference.

If you want to learn how to eat well and lose weight and inches and achieve a healthy body weight and waist circumference, I can help. I offer a number of services and packages that can be taken in-person in my Coquitlam (British Columbia office) or via Distance Consultation (Skype, long distance telephone). You can click on the Services  to learn more or have a look around the Shop. Please feel free to send me a note using the Contact Me form on the tab above if you have questions and I will reply as soon as possible.

To your good health!

Joy

 https://twitter.com/lchfRD

  https://www.facebook.com/BetterByDesignNutrition/


Copyright ©2018  BetterByDesign Nutrition Ltd.

LEGAL NOTICE: The contents of this blog, including text, images and cited statistics as well as all other material contained here (the “content”) are for information purposes only.  The content is not intended to be a substitute for professional advice, medical diagnosis and/or treatment and is not suitable for self-administration without the knowledge of your physician and regular monitoring by your physician. Do not disregard medical advice and always consult your physician with any questions you may have regarding a medical condition or before implementing anything  you have read or heard in our content.

References

Woolcott OO, Bergman RN. Relative fat mass (RFM) as a new estimator of whole-body fat percentage ─ a cross-sectional study in American adult individuals, Scientific Reports; Volume 8, Article number: 10980 (2018), https://www.nature.com/articles/s41598-018-29362-1

Gallagher, D. et al. Healthy percentage body fat ranges: an approach for developing guidelines based on body mass index. Am J Clin
Nutr 72, 694–701 (2000).

Is Coconut Oil Pure Poison?

For the second time in the last few days, dire warnings about the dangers of eating certain foods and not eating others dominated the headlines. In a previous post, I addressed the Harvard-based study which claimed that low carb diets shorten lifespan. This post is about a claim made by an adjunct professor from Harvard that ‘coconut oil is pure poison‘.


While the coconut oil story only broke this week, the lecture given by Dr. Karin Michels where she issued the dire warning about coconut oil took place on July 10, 2018 and is posted on YouTube in German [1].  In a talk titled “Coconut oil and other nutritional errors”, Dr. Michels, adjunct professor of epidemiology at Harvard T.H. Chan School of Public Health and Director of the Institute for Prevention and Tumor Epidemiology at the University of Freiburg in Germany said;

“I can only warn you urgently about coconut oil. This is one of the worst foods you can eat.”

Michels called the health claims about coconut oil “absolute nonsense” and said it’s “pure poison” for its saturated fat content and its threat to cardiovascular health [2].

For purposes of this article, let’s first look at the (1) health claims surrounding coconut oil and then (2) the belief that saturated fat is a threat to cardiovascular health.

(1) Health Claims about Coconut Oil

Most of the health claims surrounding coconut oil relate to the fact that it contains Medium Chain Triglycerides or MCTs which are metabolized differently than long chain fatty acids, going directly to the liver rather than requiring to be broken down through digestion.

Half (44 – 52%) of the saturated fat in coconut oil is a specific Medium Chain Triglyceride called lauric acid [3].

A quarter (~24%) to a third (33%) of the fatty acids in coconut oil contain the long-chain saturated fats, including mysteric (13-19 %) and palmitic acid (8-11%) and ~10-20% of the fatty acids are made up of 2 short chain saturated fatty acids, caproic (decoic) acid (5-9%) and caprylic acid (6-10%) [3].

The remaining 10% of the fatty acids in coconut oil are unsaturated, mostly oleic acid, with a small amount of linoleic acid [3].

Specific Health Benefit Claims of Coconut Oil

There are studies using 100% medium chain triglycerides that have shown modest weight loss with use of MCT oil compared with olive oil over a 4-month period , however a study comparing coconut oil (~50% MCTs) with soy bean oil (almost all long chain triglycerides) did not have a significant impact on weight loss over a 3-month period [4]. While the actual amount of weight loss with MCT oil may not be substantial, studies seem to indicate that it is “visceral adiposity” or “belly fat” that decreases, lowering waist circumference[4].

Something that needs to be kept in mind is that only ~ 1/3 of the fat in coconut oil is MCT oil. Most of the fat in coconut oil is saturated fat along with a modest amount of unsaturated fat. People making “fat bombs” and drinking “Bulletproof coffee” with coconut oil while expecting the benefits reported with 100% MCT oil will likely to be disappointed.  For the most part, people who add excess coconut oil to their diet as an elixir are simply adding extra energy to their diet.

Coconut Oil and Cholesterol

When it comes to cholesterol, there are numerous studies that have found that coconut oil raises HDL (the so-called ‘good cholesterol’) to a greater extent than olive oil, however some studies indicated that coconut oil may increase LDL (what used to be assumed to be ‘bad cholesterol’) whereas other studies have found that it doesn’t change LDL cholesterol, or if it did raise it it was in an insignificant amount. The issue is does it matter if LDL cholesterol is raised? Is a rise in total LDL cholesterol associated with an increased risk of heart disease?

(2) Saturated Fat is a Threat to Cardiovascular Health

The basis of the claim by the Harvard adjunct professor that coconut oil is “pure poison” rests with the fact that much of the fat in it is saturated fat and that saturated fat raises total LDL cholesterol, which is associated with heart disease. But is this true?

It is commonly assumed that higher total LDL cholesterol is associated with an increased risk of heart disease, but we now know there are different type of LDL particles – not all of which are associated with atherosclerosis.  While eating foods rich in saturated fat, including coconut oil will raise LDL-cholesterol,  not all LDL-cholesterol is “bad” [5].

There are two types of LDL cholesterol; the small, dense LDL which are associated with atherosclerosis and the large, fluffy LDL which are protective against cardiovascular disease [5].

While it used to be believed that total LDL-cholesterol (LDL-C) was a good proxy (indirect substitute) measurement for heart disease risk, we now know that a much more accurate measurement is the LDL-cholesterol particle number (LDL-P) which measures the actual number of LDL particles. This is a much stronger predictor of cardiovascular events than LDL-C [6] because the more particles there are, the more small, dense LDL there are.

Another good assessor of cardiovascular risk is the ratio of apolipoprotein B (apoB): apolipoprotein A (apoA) [7]. Lipoproteins are particles that transport cholesterol and triglycerides (TG) in the blood stream and are made up of apolipoproteins, phospholipids, triglycerides and cholesterol. Apolipoprotein B is an important component of many of the lipoprotein particles associated with atherosclerosis such as chylomicrons, VLDL, IDL, LDL – with most found in LDL. Since each lipoprotein particle contains one apoB molecule, measuring apoB enables the determination of the number of lipoprotein particles that contribute to atherosclerosis and for this reason that ApoB is considered a much better predictor of cardiovascular disease risk than LDL-C [7].

Is Higher Saturated Fat in the Diet Associated with Heart Disease?

Recommendations for the continued restriction of dietary fat in the US and Canada is based on the enduring belief that lowering saturated fat in the diet would lower blood cholesterol levels and reduce heart disease.

The question is does it?

A 2018 study published in the journal Nutrients looked at health and nutrition data from 158 countries from 1993-2011 and found that total fat and animal fat consumption were least associated with the risk of cardiovascular disease and that high carbohydrate consumption,  particularly as cereals and wheat was most associated with the risk of cardiovascular disease [9]. Significantly, both of these relationships held up regardless of a nation’s average national income.

These findings support those of the 2017 PURE (Prospective Urban and Rural Epidemiological) study, the largest-ever epidemiological study which recorded dietary intake of 135,000 people in 18 countries over an average of 7 1/2 years, including high-, medium- and low-income nations. The PURE study found an association between raised cholesterol and lower  cardiovascular risk and that “higher carbohydrate intake was associated with higher risk of total mortality”. It also reported that “total fat and individual types of fat were related to lower total mortality (death)” [10].

A recent study published in the American Journal of Clinical Nutrition reports that long-term consumption of the saturated fat found in full-fat dairy products is not associated with an increased risk of cardiovascular disease (atherosclerosis, coronary artery disease, etc.) or other causes of death, and may actually be protective against heart attack and stroke [11].

This recent large-scale epidemiological data provides strong evidence that eating a diet containing saturated fat is not associated with heart disease. While eating saturated fat raises blood levels of LDL cholesterol, we now know that there is more than one type of LDL cholesterol and only the small, dense LDL cholesterol is linked to atherosclerosis. The large, fluffy LDL is protective [12].

Some final thoughts…

For the last forty years, Americans and Canadians have diligently reduced their consumption of eggs, full fat cheese, butter and red meat all because they had been told that the saturated fat in these foods would raise their total LDL cholesterol (which it does) and which will predisposed them to heart disease (not necessarily). While we know that eating foods high in saturated fat will raise total LDL levels, total LDL as mentioned above is not a good measure of cardiovascular risk. LDL particle size and ApoB: ApoA are much better predictors.

Another very good estimator of heart disease risk comes from assessing triglyceride (TG):HDL ratio [8]. It is widely accepted from both sides of the saturated fat debate that high levels of TG predispose people to heart disease, especially when associated with low levels of HDL (‘good cholesterol’).

Since (1) excess carbohydrate in the diet contributes to a rise in TG level and (2) the higher the ratio of HDL is to TG, the more protective it is against heart disease, it would logically follow that including some coconut oil in the diet (which contributes to raising HDL) and minimizing excess carbohydrate (especially as refined carbs) in the diet would together have no negative impact on the risk of heart disease and likely have benefit (based on the evidence presented in previous articles).

Adding excess saturated fat – whether as coconut oil or butter in the diet achieves no special benefit but avoiding it does nothing to lower the risk of heart disease risk and may even increase it.

Coconut is not “pure poison” but it isn’t a magic elixir either.  It is a healthy, natural fat rich in saturated fat with a good supply of MCT oils that can be used in moderate portions for cooking and for raising the ‘smoke point’ of butter when used in cooking (keeping butter from burning when heated). It’s time to stop vilifying saturated fat which is based on proxy measurements of total LDL cholesterol and on the assumption that increased total LDL is a predictor of heart disease.  We have much more accurate proxy measures and need to use them.

If you would like some help known which fats you can and should eat and in what amounts based on your existing health conditions and weight management goals, I can help. I provide services via Distance Consultation (Skype, long distance telephone) as well as in-person in my Coquitlam (British Columbia) office.

If you have questions on my services, please send me a note using the Contact Me form located on the tab above and I ‘ll be happy to reply as soon as I’m able.

To our good health!

Joy

 https://twitter.com/lchfRD

  https://www.facebook.com/BetterByDesignNutrition/

Copyright ©2018  BetterByDesign Nutrition Ltd. 

LEGAL NOTICE: The contents of this blog, including text, images and cited statistics as well as all other material contained here (the “content”) are for information purposes only.  The content is not intended to be a substitute for professional advice, medical diagnosis and/or treatment and is not suitable for self-administration without the knowledge of your physician and regular monitoring by your physician. Do not disregard medical advice and always consult your physician with any questions you may have regarding a medical condition or before implementing anything  you have read or heard in our content.

References

  1. May, A. USA Today “Coconut oil is ‘pure poison,’ Harvard professor says in talk on nutrition”, August 22, 2018,  https://www.usatoday.com/story/news/nation-now/2018/08/22/harvard-professor-coconut-oil-pure-poison/1060269002/?utm_source=dlvr.it&utm_medium=twitter
  2. Drayer L, Nedelman M. CNN, The facts behind coconut oil is ‘pure poison’ claim, August 22, 2018
  3. Chempro – Edible Oil Analysis Retrieved from http://www.chempro.in/fattyacid.htm
  4. Liau KM, Lee YY, Chen CK, Rasool AHG. An Open-Label Pilot Study to Assess the Efficacy and Safety of Virgin Coconut Oil in Reducing Visceral Adiposity. ISRN Pharmacology. 2011;2011:949686. doi:10.5402/2011/949686.
  5. Lamarche, B., I. Lemieux, and J.P. Després, The small, dense LDL phenotype and the risk of coronary heart disease: epidemiology, patho-physiology and therapeutic aspects. Diabetes Metab, 1999. 25(3): p. 199-211.
  6. Cromwell, W.C., et al., LDL Particle Number and Risk of Future Cardiovascular Disease in the Framingham Offspring Study – Implications for LDL Management. J Clin Lipidol, 2007. 1(6): p. 583-92.
  7. Lamarche, B., et al., Apolipoprotein A-I and B levels and the risk of ischemic heart disease during a five-year follow-up of men in the Québec cardiovascular study. Circulation, 1996. 94(3): p. 273-8.
  8. Manninen, V., et al., Joint effects of serum triglyceride and LDL cholesterol and HDL cholesterol concentrations on coronary heart disease risk in the Helsinki Heart Study. Implications for treatment. Circulation, 1992. 85(1): p. 37-45.
  9. Grasgruber, P., et al., Global Correlates of Cardiovascular Risk: A Comparison of 158 Countries. Nutrients, 2018. 10(4).
  10. Dehghan, M., et al., Associations of fats and carbohydrate intake with cardiovascular disease and mortality in 18 countries from five continents (PURE): a prospective cohort study. Lancet, 2017. 390(10107): p. 2050-2062.
  11. de Oliveira Otto, M.C., et al., Serial measures of circulating biomarkers of dairy fat and total and cause-specific mortality in older adults: the Cardiovascular Health Study. Am J Clin Nutr, 2018.
  12. Lamarche, B., I. Lemieux, and J.P. Després, The small, dense LDL phenotype and the risk of coronary heart disease: epidemiology, patho-physiology and therapeutic aspects. Diabetes Metab, 1999. 25(3): p. 199-211.

Do Low Carb Diets Shorten Lifespan – a closer look

INTRODUCTION: Headlines warned people this week of the dire risks of a shorter lifespan by eating a low carbohydrate diet, but is it true?  By asking a few simple questions it’s easy to see that this newly published study cannot be used to support this claim.


Headlines are designed to attract readers to a story, to have people talking about it on social media and sharing it, so the way a study is framed is critical. Readers need to be discerning to ask questions about the story so they can tease apart truth from significance. What do I mean by this?

A fact can be true but really be quite meaningless, having little significance, which is often the case in these types of sensationalized reports. Let me give you an example to help explain what I mean. Let’s say there are 3 blond-haired 6 year old children and 2 red-haired 6 year old children in a room and one of the red-headed children slips on some water on the floor, falls and injures themselves, I could truthfully claim that injury rate of 6 year olds is 20% (1 in 5) but that the injury rate among red-headed children is much higher, at 50%. This is true, but is it significant? First of all the study groups were too small to make a comparison meaningful and that the child’s injury had nothing to do with them having red-hair and everything to do with the fact that there was water on the floor.

Looking at the recently published study which claimed that low carb diets could shorten lifespan[1], there are several questions we need to ask ourselves to begin to determine if the findings were meaningful such as “how was the information collected“, “how many people were in each comparison group” and “were there confounding factors” (factors that could confuse understanding the data).

How was the Information Collected

Subjects were asked to complete a 66-item semi-quantitative food frequency questionnaire (FFQ) indicating how many times in the last year they ate specific foods. The FFQ it was based on was the 61-item Harvard Food Frequency Questionnaire, a page of which appears below.

That’s right, people needed to estimate how many times in the last year they ate 1 oz of chocolate, or 1 cup of breakfast cereal or an ounce of nuts. Seriously?? How accurate would you be at adding up in your head all the 1 oz servings of chocolate that you estimated that you ate in a year. If you ate breakfast cereal in a serving size other than a cup, how would you even begin to accurately estimate how many 1 cup servings you had in an entire YEAR including for breakfast and night time snacks? Thinking about this, one can see why FFQ data is considered very inaccurate and certainly can’t be used to estimate the percentage of carbohydrate a person has in their diet!

The first part of the study took place between 1987 and 1989 and asked ~15,000 people between the ages of 45 and 64 years living in 4 communities in the US to complete the FFQ.  The data from the second part of the study was a meta-analysis which combined the data from the first part of the study with data from 7 multi-national population studies using the same FFQ and the third part of the study took place between 1993–95.

Page 3 from the 61-question Harvard Food Frequency Questionnaire

One huge problem with this paper was that it assumed that even if people changed their diet between the first visit in 1987-1989 and the third visit in 1992-1993, that people didn’t change their diets from the third visit until the data was analyzed in 2013; a period of ~20 years. There are all sorts of reasons people change the way they eat over time including health reasons (wanting to lose weight, for example), becoming parents, changes in economic situation, getting married and having someone else doing the cooking, or taking cooking classes! Assuming people ate the same way from 1993 until 2013 makes no sense.

How Many People Were in Each Comparison Group

As with the risk of injury amongst red-headed 6 year olds in the example above, the way the groups are divided and how many people are in each group matters.

Carbohydrate ranges were broken down into 5 groups;
<30% of calories as carbohydrate
30-40% of calories as carbohydrate
40-50% of calories as carbohydrate
50-55% of calories as carbohydrate
55-65% of calories as carbohydrate
>65% of calories as carbohydrate

A major problem with how the groups were broken up was that there were only 315 people that fell in the <30% of calories as carbohydrate group compared with more than 6,000 in the 40-50% of calories as carbohydrate  group and the more than 3,000 in both the 50-55%  and 55-65% of calories as carbohydrate groups.

As with the risk of injury of being red-headed example above, the way the groups were divided and how few people were in the lowest group of carbohydrate consumption makes the higher relative risk of being in the lower carbohydrate group truthful, but meaningless.

Were There Confounding Factors?

There’s an even bigger problem with this study.

Researchers did not update the carbohydrate intake of subjects that developed heart disease, Diabetes, or stroke before the third visit. Let’s say that some people in the lowest carb intake group developed Type 2 Diabetes and went to see their public health Dietitian who recommended that they increase their carb intake to be around the recommended ~50% (45-65%)  of their dietary caloric intake, or more. If they followed that advice and developed complications and died, their death would have been attributed to them eating a “low carb diet” rather than eating 50% or more of calories as carbohydrate over the subsequent 20 years.  The same holds true with dietary changes that subjects made based on their doctor’s or Dietitian’s recommendation when they got heart disease or had a stroke.  Because the groups were so lopsided in terms of size, being diagnosed with one of these serious conditions had the most impact on the lowest carb intake group because it was comparatively much smaller.

There were other confounding factors including, as someone pointed out on Twitter, that there was no mention of analysis done on alcohol consumption in the paper, so there’s no way of knowing if higher death rates were associated with higher alcohol consumption. As well, there was a higher rate of smoking in the lower carbohydrate intake group, so were the deaths smoking-related or diet-related?

Some final thoughts…

There are many more problems with this study, outlined in depth by people such as Dr. Zoe Harbcombe but there is one glaring fact. Epidemiological studies (population studies) do not establish causation.  When properly done, the results of epidemiological studies indicate that there may be a relationship between factors that needs to be tested in a randomized control trial.

Nevertheless, researchers concluded that there was a ‘negative long-term association between life expectancy and a low carbohydrate diet’ (which they defined as a diet of <40% of calories as carbohydrate, which is not a low carbohydrate diet, but a moderate-carbohydrate intake.

How the dietary information was collected, how the comparison groups were set out and the how the subjects were distributed amongst those groups and the multiple significant confounding factors make it impossible to conclude that a low carbohydrate diet shortens lifespan.

Evidence that Low Carbohydrate Diets are Both Safe and Effective

There are many studies and meta-analyses using a low-carb intervention that span 18 years that are outlined in 76 publications involving  6,786  subjects and that include 32 studies of 6 months or longer and 6 studies of 2 years or longer that demonstrate that low carb diets are both safe and effective. You can read more about that here.


Do you have questions about whether a low-carbohydrate diet would be appropriate for you given your health goals? Or do you wonder medical conditions you may have or medications you may take factor in? Please send me a note using the “Contact Me” form and I’ll be happy to reply.

I provide both in-person services in my Coquitlam (British Columbia) office as well as Distance Consultation services (via Skype or long distance phone) and would be happy to help.

To our good health,

Joy

 https://twitter.com/lchfRD

  https://www.facebook.com/BetterByDesignNutrition/

Copyright ©2018 BetterByDesign Nutrition Ltd.

LEGAL NOTICE: The contents of this blog, including text, images and cited statistics as well as all other material contained here (the “content”) are for information purposes only.  The content is not intended to be a substitute for professional advice, medical diagnosis and/or treatment and is not suitable for self-administration without the knowledge of your physician and regular monitoring by your physician. Do not disregard medical advice and always consult your physician with any questions you may have regarding a medical condition or before implementing anything  you have read or heard in our content.

References

  1. Seidelmann SB, Claggett B, Cheng S, et al. Dietary carbohydrate intake and mortality: a prospective cohort study and meta-analysis. The Lancet Public Health 2018. https://www.thelancet.com/journals/lanpub/article/PIIS2468-2667(18)30135-X/fulltext
  2. Harvard Food Frequency Questionnaire  https://regepi.bwh.harvard.edu/health/FFQ/files/8