Green Tea Should not be like Buckley’s®

Recently, I came across a social media post about someone that wanted to drink green tea for it’s health benefits, but just couldn’t get over it’s “bad taste”.  I followed the origin of the thread to Reddit, where people guessed whether green tea’s “off taste” for that person may be genetic, like the taste of cilantro. While that can be the case (i.e. genetic sensitivity to a compound called 6-n-propylthiouracil which is found in some flavonoids), others touched on whether it was because the person was making tea using supermarket green tea bags rather than loose tea, whereas a few people hit on the complexity of the issue.  In this post I will discuss some of the factors that affects whether your green tea has a pleasant or “off taste”,  because after all green tea should be something you actually enjoy and not only drink for it’s health benefits.

NOTE: The first part of this article are some personal details of my experience learning to prepare multi-ethnic food and beverages and the second part of the article is specifically about the preparation of green tea and its health benefits.


Once a Foodie, Always a Foodie

I have been adventurous in trying different kinds of food and beverages since I’m little and I remember my parents taking me to an authentic Japanese restaurant even as a kid.  As a teen, I enjoyed cooking multi-ethnic food and learned authentic Cantonese cooking in the 1970s when my mom took a course in Chinatown. In the 1980’s, I learned authentic Thai cooking from the friend of a family business associate who was from Thailand and in those days one couldn’t buy pre-made Thai curry pastes that are available everywhere now, so I sourced the raw ingredients in Lao-Thai groceries and hand-pounded them myself in a mortar and pestle (that I still own and use!). I still have the recipe books sent to me from Thailand.

It didn’t matter whether it was Asian, Middle Eastern or Jamaican, I was a bit of a purist; wanting the ingredients and cooking method to be as authentic as possible. For me, the best way to find out how to make something was to ask someone from that culture that loved to cook.

What was true about food was also true for beverages.

I couldn’t just enjoy a cup of coffee or glass of wine without knowing more. Whether it was the origin of the coffee beans, the length of time the beans were roasted, or how long the water is in contact with the beans — I needed to know, and I was interested in such things when it was not popular either.

Before “West Coast coffee” was a thing and before there ever was Starbucks® or Peet’s, there was a place called La Vieille Europe on St. Laurent Blvd in Montreal which was where I got my single origin, whole bean coffee. As I found out years later, the son of the roaster that owned that store taught the original roaster from Peet’s in the US how to roast beans. Small world.

When I lived in wine country (Sonoma county) of California for a few years in the early 2000s, I was determined to educate my palate to distinguish between different types of wine, which I did. I knew what I liked — which turned out to be an expensive habit when I returned to Canada after 9/11.  At the beginning I explored the wines of Australia and found some I really liked, but missed the delicious and inexpensive  wines of Sonoma and Napa.

Once again, my palate returned to coffee, but finding a decently roasted coffee in Vancouver BC was harder than I thought. Given that this was the “West Coast”, I was discouraged how difficult it was to find good quality Arabica beans that weren’t over roasted. I stumbled across a few small roasters that did an excellent job, but in time they modified their roasts for “local tastes”, so once again, I was back looking for a new roaster. On a few occasions, I ordered from La Vieille Europe in Montreal because in the 40 or 50 years they have been in business, they never lost their passion for properly roasted, single origin coffee.

Over the 20 years I have lived in Vancouver, I discovered the world of quality tea that is largely unknown to most non-Asian born Chinese. There was one excellent tea importer in the Chinatown that I knew of and one that is still in the Richmond Public market that have single origin estate teas that rival the diversity of the best coffee roaster. Over the past 20 years, I’ve explored different types of tea from China and  have come to like a few; my favourite of which is a fermented tea known as Pu-ehr.

A number of years ago, I stumbled across matcha tea in a specialty Japanese store before it was a “thing”.  Knowing nothing about it, I have since found out that I had been using ‘culinary matcha‘ (designed for making Japanese sweets) for drinking.  No wonder it tasted bitter and I needed to blend it with other ingredients to make it palatable. Thankfully, when fresh it had the same health benefits, which I wrote about in 2013 in this article about the Role of Green Tea Powder (Matcha) in Weight and Abdominal Fat Loss. As you’ll read below, I have since learned about making and enjoying real ceremonial-grade matcha, which is intended for drinking from large matcha bowls.

Learning about Japanese Green Tea

At the beginning of this year, I began to explore green teas from Japan when I discovered Hibiki-An, an online tea importer from Uji region of Kyoto. My culinary world expanded once again.

Unable to decide between the many different types and grades of tea that they carry, I order a sampler of 3 types of green teas (Sencha, Gyokuro Superior and Sencha Fukamushi).  They came in 4 oz individual bags — the quantity that can be reasonably be used up within 3 months, when it is fresh.  All 3 teas were all of “superior” grade, which is not the best quality (as my palate is not developed yet) but is a high grade tea.

When the tea arrived, it came with very specific brewing instructions (a summary of the much more detailed instructions on their web page). I’ve since learned that different types of green tea require different water temperatures and different lengths of brewing time.

Wow, who knew?

For the purpose of “cooling” the water to just the right temperature, there is a yuzamashi — which is a small ceramic cup with a spout that the boiled water gets poured into to cool momentarily before being poured into the kyuzu; a special tea pot with a single handle, built in mesh filter and large opening for the water (see photo, above).

You don’t need the get fancy, though.  I had these things for years from my days exploring different regional teas, but one can use an ordinary bowl to cool the water and any plain ceramic tea pot to brew the tea in!

Tea to Water Ratio, Water Temperature and Steeping Time

Each type of green tea has a very specific ratio of green tea leaves to water, and very specific water temperatures and steeping time.

For example, of the three teas in my sample set, Sencha is brewed at 80° Celsius (176 ° Fahrenheit) for one minute, Gyokuro is brewed at 60-70 ° Celicus (140-158° Fahrenheit) for 1 -1/2 to 2 minutes and Sencha Fukamushi is brewed at the same temperature as regular Sencha, but for only 40-45 seconds.

I’ve discovered that following these guidelines using good quality, fresh tea leaves makes a cup of tea that is like nothing I’ve tasted anywhere before. It is not simply snobbery, but the science of what makes for a good cup of tea.

Note: I downloaded several studies that have researched the difference in brewing time, water to tea leaf ratio and water temperature but have decided against boring anyone with the details.

 

Recently, I became ready to move onto “realmatcha tea and ordered some from the same supplier in Japan.

It came in tiny cans (quantities that should be used up in a 3 week period).

The colour was a bright jade green and the taste had no hint of bitterness whatsoever!

It tastes amazing!

My teas ordered from Japan are my “weekend teas” and during the week I used run-of-the-mill Sencha purchased locally at a Japanese store.

I drink them because I like them and for the health benefits.

Health Benefits of Green Tea

The health benefits of green tea are many. Several large-scale population studies have linked increased green tea consumption with significant reductions in the symptoms of metabolic syndrome; a cluster of clinical symptoms which include insulin resistance and hyperinsulinemia (high levels of circulating insulin), Type 2 Diabetes, high blood pressure, and cardiovascular disease including coronary heart disease and atherosclerosis.

Catechins make up ~ 30% of green tea’s dry weight, of which 60—80% are catechins. Oolong and black tea which are produced from partially fermented or completely fermented tea leaves contains approximately half the catechin content of green tea

It is believed that epigallocatechin gallate (EGCG) which is the most abundant catechin in green tea actually mimics the action of insulin, which has positive health effects for people with insulin resistance or Type 2 Diabetes [Kao et al].

EGCG also lowers blood pressure almost as effectively as the ACE-inhibitor drug, Enalapril, having significant implications for people with hypertension (high blood pressure) and cardiovascular disease [Kim et al].

Green tea catechins also have benefit for weight loss. A 2009 meta-analysis of 11 green tea catechin studies found that subjects consuming between 270 to 1200 mg green tea catechins / day (1 — 4 tsp of matcha powder per day) lost an average of 1.31 kg (~ 3 lbs) over 12 weeks with no other dietary or activity changes [Hursel].

Drinking 8-10 cups of green tea per day is enough to increase blood levels of EGCG into a measurably significant range [Kim et al], but matcha contains  137 times greater concentration of EGCG compared to green tip tea [Weiss et al].

WARNING TO PREGNANT WOMEN While EGCG has also been found to be similar in its effect to etoposide anddoxorubicin, a potent anti-cancer drug used in chemotherapy [Bandele et al], high intake of polyphenolic compounds during pregnancy is suspected to increase risk of neonatal leukemia. Bioflavonoid supplements (including green tea catechins) should not be used by pregnant women [Paolini et al].

Green Tea Shouldn’t Taste Bad!

The reason someone would find green tea has an “off flavor” was because the tea was either not fresh, not of a half-decent quality, was brewed at the wrong temperature or for the wrong length of time. Think about it this way; it all a person ever drank was cheap pre-ground coffee, they might think coffee tasted bad, too.

The fact is, one doesn’t need to order tea from Japan to enjoy a decent cup of green tea! I found the green teas below at a local Japanese grocery store and when brewed properly they are great as everyday tea.

 

If you aren’t adventurous to explore ethnic markets or time is limited, I can highly recommend the online supplier I mentioned above as having excellent price for the quality of green tea, very good explanations on their web page and quick delivery.

For everyday use, I have a little water cooler (yuzamashi) bowl and small single handed tea pot (kyuzu) so brewing a decent quality sencha green tea (my daily tea of choice) has become second nature, but as I mentioned above, one doesn’t need special equipment to make a decent cup of green tea!  All you need is the  right amount of fresh, good quality tea leaves steeped for the right length of time in hot water that’s at the right temperature. The only thing to keep in mind is that once the package of tea is opened, it needs to be stored in a sealed, airtight, light-proof container and used up within 3 months or sooner.

Making a good cup of green tea is not really much different than brewing a good cup of coffee. To make a good cup of coffee, one needs to consider the country / countries of origin of the beans, the bean roasting time and temperature, the brewing method involved (drip, espresso, French press, etc), the required water temperatures needed for that method, and the different grind of beans and a specific water-to-ground-bean ratio required for that brewing method. It sound’s complicated, but if you a few types of coffee regularly, it’s not hard.

It’s the same with green tea.

In one sense, there is a lot to learn at first to make a good cup of green tea but on the other hand, once you know a few basics and find a green tea or two you really enjoy, the rest is easy!

Tea has amazing health benefits, but unlike the cough medicine Buckley’s®, there is no need to drink tea that “tastes terrible, but it works”!

If you would like to know more about what I do as a Dietitian and how I can help you with weight loss or to seek to reverse the symptoms of metabolic syndrome, including Type 2 Diabetes, high blood pressure and other related markers, please send me a note using the Contact Me form on this web page.

If you would like to learn more about the services I offer and their costs, please click on the Service tab or have a look in the Shop.

To your good health!

Joy

You can follow me at:

       https://twitter.com/lchfRD

         https://www.facebook.com/BetterByDesignNutrition/

https://www.instagram.com/lchf_rd

 

Copyright ©2019 BetterByDesign Nutrition Ltd.

LEGAL NOTICE: The contents of this blog, including text, images and cited statistics as well as all other material contained here (the ”content”) are for information purposes only.  The content is not intended to be a substitute for professional advice, medical diagnosis and/or treatment and is not suitable for self-administration without the knowledge of your physician and regular monitoring by your physician. Do not disregard medical advice and always consult your physician with any questions you may have regarding a medical condition or before implementing anything  you have read or heard in our content.

References

Gayathri Devi A, Henderson SA, Drewnowski A. Sensory acceptance of Japanese green tea and soy products is linked to genetic sensitivity to 6-n-propylthiouracil. Nutr Cancer. 1997;29(2):146-51

Hursel R, Viechtbauer W, Westerterp-Plantenga MS. The effects of green tea on weight loss and weight maintenance: a meta-analysis. Int J Obes (Lond) 2009;33:956—61.

Paolini, M, Sapone, A, Valgimigli, L, ”Avoidance of bioflavonoid supplements during pregnancy: a pathway to infant leukemia?”. Mutat Res 527 (1—2): 99—101. (Jun 2003)

Kao YH, Chang MJ, Chen CL, Tea, Obesity, and Diabetes, Molecular Nutrition & Food Research, 50 (2): 188—210, February 2006

Kim JA, Formoso G, Li Y, Potenza MA, Marasciulo FL, Montagnani M, Quon MJ., Epigallocatechin gallate, a green tea polyphenol, mediates NO-dependent vasodilation using signaling pathways in vascular endothelium requiring reactive oxygen species and Fyn, J Biol Chem. 2007 May 4;282(18):13736-45. Epub 2007 Mar 15.

Weiss, DJ, Anderton CR, Determination of catechins in matcha green tea by micellar electrokinetic chromatography, Journal of Chromatography A, Vol 1011(1—2):173-180, September 2003

The Connection Between Sugar and Cancer

I’ve heard that some types of cancer feed on glucose (the sugar in our blood) and I know of a few people that started a ketogenic diet as adjunct therapy to be used along side surgery and chemotherapy in the treatment of glioblastoma (a form of aggressive brain cancer), but just came across an article that explains why limiting sugar intake can lower one’s risk of cancer. In this article, I explain one biological link between cancer and sugar.


A “Master Switch for Cancer”

In the 1980’s, Dr. Lewis Cantley was a Professor at Tufts University School of Medicine in Boston when he identified a previously unknown enzyme known as phosphoinositide-3-kinase, or PI3K which turned out to a type of ‘master switch for cancer’.

PI3K’s normal function is to alert cells to the presence of the hormone insulin; resulting in the cells pumping in glucose to be used as metabolic fuel for the cell. Signals from PI3K are necessary for normal cell growth, survival and reproduction, however when this enzyme is hijacked by cancer cells, it provides tumors with an over-abundant supply of glucose, which results in their rapid proliferation.

The gene that codes for PI3K is now thought to be the most frequently mutated cancer-promoting gene in humans and is believed to be associated with 80% of cancers, including those of the breast, brain and bladder.

In 2012, Dr. Cantley became the Director of the Sandra and Edward Meyer Cancer Center at Weill Cornell Medicine, which is the biomedical research unit and medical school of Cornell University, where he is Professor of Cancer Biology. In his work at Weill Cornell, Dr. Cantley has continued to investigate the role of PI3K.

Challenges with some anti-cancer drugs that have been developed that block the PI3K enzyme is that these PI3K-inhibitor drugs are designed to starve the cancer cell of glucose, but also signal the person’s liver that their body is starving for glucose, too.  As a result, the liver would break down glycogen (a storage form of glucose) and send large amounts of glucose into the person’s blood, resulting in their blood sugar spiking and triggering their pancreas to release lots of insulin, as a result. The presence of all of this glucose from the liver and insulin from the pancreas resulted in these patient’s tumors continuing to grow.

Dr. Cantley and his colleagues wondered whether the spike in insulin from the breakdown of glycogen might be countering the effect of the PI3K-inhibiting drugs by reactivating the PI3K pathway in the cancer cells.  Studies first tried giving these patients Diabetes medications to lower their blood sugar and insulin levels, but this didn’t work nearly as well as what they tried next.

The researchers came up with a theory that a ketogenic diet (a diet that is very low in carbohydrate)   could prevent the spikes caused in blood sugar by the  PI3K-inhibiting drugs and might help the drug starve the tumor, while the patient’s blood sugar remained normal because the body would be fueled by breaking down fat and protein for ketones.

They tested the theory using genetically engineered mice that developed pancreatic, bladder, endometrial and breast cancers and treated the mice with a new PI3K inhibitor drug. The study demonstrated that spikes of insulin did indeed reactivate the pathway in tumors, countering the anti-cancer effect of the drug. However, when the researchers put the mice on a ketogenic diet, in addition to the medication, the tumors shrank. The results were published in the journal Nature in July 2018.

Dr. Cantley explains the biological connection between cancer and sugar this way;

“Our pre-clinical research suggests that if somewhere in your body you have one of these PI3K mutations and you eat a lot of rapid-release carbohydrates, every time your insulin goes up, it will drive the growth of a tumor. The evidence really suggests that if you have cancer, the sugar you’re eating may be making it grow faster.”

Some Final Thoughts…

A normal cell function requires the enzyme PI3K that results in the cell pumping in glucose to fuel growth and reproduction and a cancer cell that has a defect in the gene that codes for PI3K may do the same thing. Sugar, in and by itself does not cause cancer, but in those that have a few abnormal cells, sugar can drive the process of tumor development.

According to the World Health Organization, the average American consumes 126 grams of sugar a day, more than people in any other country and the average Canadian eats almost 90 grams (89.1) of sugar per day. Sugar is not required in the diet; in fact, there is no essential need to eat carbohydrate at all, if people eat adequate amounts of healthy fats and protein.

Given that as many as 88% of Americans are already metabolically unhealthy — with likely a smaller percentage of Canadians following suit (due to slightly lower obesity statistics), there is no valid reason* for the average American or Canadian to be eating foods with added sugar. As I’ve written about in many previous articles, high blood sugar and high insulin levels already predispose people to Type 2 Diabetes and obesity and as outlined in this article, are involved in the proliferation of some types of cancer cells.

*(update April 29, 2019): While I say above that there is ”no valid reason” for those who may already be metabolically unwell to eat foods with added sugar — in retrospect, this is not well worded.  I think there are lots of valid reasons for people to eat foods with added sugar, but believe that it may be preferable for those who are already metabolically unwell to limited added sugars.

It would seem to me that a prudent approach for metabolically healthy people (12% of Americans, and perhaps an estimated 25% of Canadians) is to stay healthy by avoiding processed foods that are high in refined carbs and sugar, as well as foods high in “natural sugar” such as 100% fruit juice  in order to reduce the risk of becoming metabolically unwell or inadvertently feeding malignant cells that feed on glucose.

For the large majority of those that are already metabolically unhealthy, a well-designed low carbohydrate diet can help you reverse the symptoms of Type 2 Diabetes, putting the disease into remission, as well as achieve and maintain a healthy body weight.  Not inadvertently feeding tumor proliferation seems like a nice ‘side benefit’, too.

If you would like to know more about how I can help you achieve and maintain a healthy body weight or halt the progression of Type 2 Diabetes and other related metabolic disorders, please send me a note using the Contact Me form on this web page.  If you would like to learn more about the services I offer and their costs, please click on the Service tab or have a look in the Shop.

To your good health!

Joy

You can follow me at:

       https://twitter.com/lchfRD

         https://www.facebook.com/lchfRD/

          https://plus.google.com/+JoyYKiddieMScRD

https://www.instagram.com/lchf_rd

Reference

Crawford A, Increasing evidence of a strong connection between sugar and cancer, MedicalXPress, March 20, 2019,  https://medicalxpress.com/news/2019-03-evidence-strong-sugar-cancer.html

Copyright ©2019 BetterByDesign Nutrition Ltd.

LEGAL NOTICE: The contents of this blog, including text, images and cited statistics as well as all other material contained here (the ”content”) are for information purposes only.  The content is not intended to be a substitute for professional advice, medical diagnosis and/or treatment and is not suitable for self-administration without the knowledge of your physician and regular monitoring by your physician. Do not disregard medical advice and always consult your physician with any questions you may have regarding a medical condition or before implementing anything  you have read or heard in our content.

Now Licensed for Virtual Dietetic Practice Across Canada

If you live almost anywhere in Canada and are looking for a Registered Dietitian with experience in food allergy or sensitivity, including celiac disease and IBS as well as the specific of providing low carbohydrate or ketogenic diet support, I can help.

Whether you live in British Columbia, Alberta, Saskatchewan, Manitoba, Ontario, Quebec, New Brunswick, Nova Scotia, Newfoundland or Labrador, I am now licensed to provide you with services.

I currently can’t provide Dietitian services to Prince Edward Island (PEI) but if I have enough demand, that may change.

Registered in British Columbia since 2002

I have been registered with the College of Dietitians of British Columbia since 2002 as an RD(t) and since 2008 as a full registrant. This registration enables me to provide services to people across Canada, with the exception of  Alberta and PEI but since I’ve had several physicians in Alberta who have asked to refer patients to me as well as individuals from Alberta requesting services, I recently applied to- and was accepted into the College of Dietitians of Alberta.

Provincial Registration Requirements for Virtual Dietetic Practice

As can be seen from the table below, Registered Dietitian such as myself that provide virtual Dietetic practice services (Distance Consultation) to other provinces are required to meet very specific registration requirements, as well as observe other regulatory regulations.

Virtual Dietetic Practice (Telepractice) – from the Alliance of Dietetic Regulatory Bodies. August, 2017

More Info

If you would like more information, you can find out more under the Services tab or by looking in the Shop. If you have specific questions, please send me a note using the Contact Me form on the tab above and I’d be glad to reply as I am able.

To your good health!

Joy

You can follow me at:

 https://twitter.com/lchfRD

https://www.facebook.com/BetterByDesignNutrition/

https://plus.google.com/+JoyYKiddieMScRD

https://www.instagram.com/lchf_rd

 

Copyright ©2019 The LCHF-Dietitian (a division of BetterByDesign Nutrition Ltd.)

 

American Heart Association: Children at Risk for Premature CVD

INTRODUCTION

It is well known that adults are at risk of cardiovascular disease (CVD) due to obesity and Type 2 Diabetes, but it is now known that children and adolescents are also at risk of premature coronary artery disease and stroke for the same reasons.

New Scientific Statement from the American Heart Association

 

According to a new scientific statement from the American Heart Association (AHA) published in the Association’s journal Circulation this past Monday (February 25, 2019) [1], obesity and severe obesity in childhood and adolescence have been added to the list of conditions that put kids and teenagers at increased risk for premature heart disease, including coronary artery disease (CAD) and stroke and are considered at high risk of cardiovascular disease simply by having type  2 diabetes, whether or not they are overweight.

Definition of Childhood Obesity

Childhood overweight is defined as a Body Mass Index (BMI) between the 85th to 94th percentile for age and sex, and childhood obesity is defined as having a Body Mass Index (BMI) ≥ 95th percentile for age and sex.

Youth with obesity are now considered at-risk of heart disease and stroke
and those with severe obesity are now considered at moderate risk of heart disease and stroke based on a large-scale study from 2016 that followed 2.3 million people for over 40 years and found the risk of dying from a cardiovascular disease were 2-3 times higher if people’s body weight as adolescents had been in the overweight or obese category, compared to youth with normal weight [2].

Obesity,  specifically the ectopic fat  (fat in the organs), is considered an independent risk factor for cardiovascular disease (CVD) and is associated with other CVD risk factors such as high triglycerides, low levels of HDL cholesterol, high blood pressure,  high blood sugar (hyperglycemia),  insulin resistance, inflammation, and oxidative stress.

It is estimated that in 2014 ~6% of all youth 2 to 19 years old in the United States were severely obese [3] and 2015 Canadian data indicates that obesity in children aged 5-17 years of age averaged around 12% (14.5% for boys and ~9.5% in girls) [4].

Given that these children are 2-3 times more likely to have premature cardiovascular disease as adults, the time to successfully address their overweight and obesity is when they are still young.

Cardiovascular Disease is a Leading Cause of Death

Cardiovascular disease is the leading cause of death for people of all ages and both genders in the United States [5] and the second leading cause of death in Canada [6], and a large percentage of these deaths are entirely preventable with appropriate dietary and lifestyle habit changes, whether implemented as children, youth, or adults.

Proposed Mechanism – inflammation

The American Heart Association scientific statement states that the exact mechanism by which these contribute to cardiovascular disease remains to be fully understood and explained. They believe that the cardiovascular risk is brought about by a combination of insulin resistance and oxidative stress (free radical damage), but that inflammation comes first.

“Insulin resistance, oxidative stress, and
inflammation are linked multidirectionally, but emerging
evidence supports a mechanism by which inflammation
comes first.”

SIDE-NOTE: This idea that inflammation precedes insulin resistance is something I’ve been coming across recently. Some propose that insulin resistance itself may be a protective mechanism against high levels of circulating glucose (sugar) in the blood [a], in much the same way as the ability to produced more and more subcutanous fat (the fat directly under the skin) may be protective against the accumulation of fat around the organs (called visceral fat) or fat in the organs or even the bone (called ectopic fat). That is, excess energy (calories) seen as high levels of glucose in the blood may be the result of storage problems in fat cells (the body’s inability to make new subcutaneous fat cells), and the subsequent overflow of fat may drive excess glucose production in the liver. a. Nolan CJ, Prentki M, insulin resistance and insulin hypersecretion in the metabolic syndrome and type 2 diabetes: Time for a conceptual framework shift, Diabetes and Vascular Disease Research, Feb 15, 2019

The American Heart Association (AHA) suggests that inflammation may increase cardiovascular risk through a combination of these three factors;

(1) high triglycerides (TG)
(2) low high-density lipoprotein cholesterol (HDL)
(3) high small low-density lipoprotein (LDL) particles (LDL-s)

NOTE: Studies on LDL-particle size indicate that people whose LDL is mostly the small, dense sub-particles have a 3x greater risk of coronary heart disease than those with mostly the large, fluffy sub-particle type, which is thought to be protective.”

The American Heart Association suggests that it’s the inflammatory process itself that triggers insulin resistance as a mechanism to keep blood sugar high in order to meet the needs of an immune system that has become activated, as would occur when the body is fighting a significant infection.

They propose that this process of inflammation leads to;
(1) defective activity of an enzyme that is responsible for breaking down triglycerides (i.e., lipoprotein lipase), which would normally be used by the body as energy or stored in fatty tissue for later use
(2) blocking of normal fat cell creation (adipogenesis)
(3) an increase in triglycerides to deal with infectious toxins and
(4) an overproduction of smaller LDL particles* and HDL particles

*The ADA suggests that the formation of small LDL particles may perform some important function in this situation of high inflammation, as small LDL particles can easily penetrate the blood vessels to deliver cholesterol to damaged tissue, and that oxidation of these small LDL particles makes atherosclerosis even worse.

The decrease in HDL cholesterol which is frequently seen on a standard cholesterol test (lipid panel) in the context of inflammation is thought to be associated with a decrease in reverse cholesterol transport which promotes the building up of cholesterol in the tissues, where it is used for the synthesis of cortisol for the cell membranes that have become damaged by what the body sees as an ‘infection’.

Recommended Dietary Changes

The AHA recommends different dietary and lifestyle changes for each of the risk factors

High Triglycerides(TG)

The AHA recommends a diet low in simple carbohydrates and added sugars, high in dietary fiber from fruits* and vegetables**, moderate amounts of complex carbohydrates, and high in polyunsaturated*** and monounsaturated fats, without specific restriction of saturated fats.

NOTES: * Fructose, the sugar in fruit, is a simple carbohydrate and can be a major contributor to high TG.  ** There is no distinction between starchy vegetables, such as potato and sweet potato (which account for a large percentage of overweight children and adults’ vegetable servings), and non-starchy vegetables, such as leafy greens and cruciferous vegetables, such as broccoli and cauliflower, as well as a whole host of other low-carbohydrate non-starchy vegetables. *** it is well established that omega 6 polyunsaturated fats contribute to the inflammation process yet the recommendation doesn’t indicate that there should be a decrease in omega 6 polyunsaturated fats such as from soybean oil, canola oil, etc. and an increase in anti-inflammatory omega 3 fats from fatty fish such as tuna, salmon, sardines, etc even though the paper itself proposes inflammation at the heart of the issue. This makes no sense to me.

Total LDL Cholesterol

A diet high in fiber from fruits* and vegetables**, whole grains, high in polyunsaturated*** and monounsaturated fats, low in saturated
fat and devoid of trans fats.

See Notes above for * , ** and ***.

NOTE: The body of the AHA paper elaborates on the detrimental effect of the small LDL subparticle (LDL-s), yet no such differentiation from total LDL cholesterol (LDL-c) is made in the Dietary Recommendations. Why is that? Particle size of LDL can be established by testing, using the Apo B: Apo A ratio (Apo B is a component of lipoproteins involved in atherosclerosis and cardiovascular disease) and by proxy using a TG: HDL ratio. It makes no sense to me that the dietary recommendations focus on total LDL cholesterol when the paper makes it clear that it is the small LDL subparticle that is the risk factor.

Blood glucose (without diagnosis of
Type 1 or Type 2 diabetes)

Low glycemic diet limiting intake of added sugar to ≤5% of total
calories, high in fruits* and vegetables**, encouraging intake of
polyunsaturated*** and monounsaturated fats, and without specific limitation to dietary saturated fats.

See Notes above for * , ** and ***.

Final Thoughts…

The dietary recommendations in this paper that focus on lowering simple carbohydrates and added sugars are very sound, as are recommendations for moderate amounts of complex carbohydrates and high in monounsaturated fat. However, to me it makes no sense for the AHA to recommend a diet high in fruit when fruit is the primary source of the simple sugar fructose and it also makes no sense to me for the dietary recommendations not to differentiate between starchy vegetables like potatoes, sweet potatoes and corn (which is actually a grain that is counted as a vegetable) that raise blood sugar and the non-starchy vegetables such as salad greens,  broccoli and cauliflower and the abundance of other low carbohydrate vegetables.

Furthermore, given that the AHA proposes an inflammatory mechanism at the root of the cardiovascular disease process, it makes no sense to me for the dietary recommendations to fail to differentiate between pro-inflammatory omega-6 polyunsaturated fatty acids (such as those found in soybean and canola oil) and anti-inflammatory omega-3 polyunsaturated fatty acids, such as those found in fatty fish.

Finally, when the body of the paper makes it very clear that it is the small LDL cholesterol subparticle that contributes to atherosclerosis and that oxidation of it in particular is an additional risk factor, why do the dietary recommendations not focus on lowering the small LDL subparticle, rather than total LDL cholesterol?

Eating a lower carbohydrate intake will both reduce triglycerides (TG) and increase high-density lipoproteins (HDL), resulting in an improved TG: HDL ratio, which would indicate a reduction in the small, dense LDL subfraction and reduced risk of cardiovascular disease.   Recommending a reduction in saturated fat intake will likely reduce any increase in HDL cholesterol, with no consistent evidence that lower total LDL cholesterol will result in lower cardiovascular rates.

On one hand, the paper provides a good explanation about the risks of the small, dense LDL subparticle yet recommends lowering dietary intake of saturated fat, in order to lower total LDL cholesterol.

Why the avoidance of consistent dietary changes that would reduce the small, dense LDL subparticle and increase protective HDL?

If you would like to know about the services for youth as well as adults, please click on the Services tab. 

To your good health!

Joy

You can follow me at:

 https://twitter.com/lchfRD

https://www.facebook.com/BetterByDesignNutrition/

 

Copyright ©2019 BetterByDesign Nutrition Ltd.

LEGAL NOTICE: The contents of this blog, including text, images and cited statistics as well as all other material contained here (the ”content”) are for information purposes only.  The content is not intended to be a substitute for professional advice, medical diagnosis and/or treatment and is not suitable for self-administration without the knowledge of your physician and regular monitoring by your physician. Do not disregard medical advice and always consult your physician with any questions you may have regarding a medical condition or before implementing anything you have read or heard in our content.

References

  1. American Heart Association, Cardiovascular Risk Reduction in High-Risk Pediatric Patients – a scientific statement from the American Heart Association, Circulation. 2019;139:00-00, https://www.ahajournals.org/doi/10.1161/CIR.0000000000000618
  2. Twig G, Tirosh A, Leiba A, Levine H, Ben-Ami Shor D, Derazne E, Haklai
    Z, Goldberger N, Kasher-Meron M, Yifrach D, Gerstein HC, Kark JD.
    BMI at age 17 years and diabetes mortality in midlife: a nationwide cohort
    of 2.3 million adolescents. Diabetes Care. 2016;39:1996—2003. https://pubmed.ncbi.nlm.nih.gov/27733421/
  3. Skinner AC, Perrin EM, Skelton JA. Prevalence of obesity and severe obesity
    in US children, 1999—2014. Obesity (Silver Spring). 2016;24:1116—
    1123. doi: 10.1002/oby.21497, https://pubmed.ncbi.nlm.nih.gov/29483202/
  4. Statistics Canada. 2015 Canadian Community Health Survey, Measured children and youth body mass index (BMI) (World Health Organization classification), by age group and sex, Canada and provinces, Canadian Community Health Survey. https://www.canada.ca/en/health-canada/services/food-nutrition/food-nutrition-surveillance/health-nutrition-surveys/canadian-community-health-survey-cchs/2015-canadian-community-health-survey-nutrition-food-nutrition-surveillance.html
  5. Benjamin EJ, Virani SS, Callaway CW et al (on behalf of the American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee). Heart disease and stroke statistics—2018 update: a report from the American Heart Association [published correction appears in Circulation. 2018;137:e493]. Circulation. 2018;137:e67—e492, https://www.ahajournals.org/doi/10.1161/cir.0000000000000558
  6. Statistics Canada, Leading causes of death, total population, by age group, https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=1310039401